Reducing Task Completion Time in Mobile Offloading Systems through Online Adaptive Local Restart

Qiushi Wang and Katinka Wolter

Freie Universität Berlin
Institut für Informatik

2nd February 2015
Mobile cloud computing architecture.
Mobile cloud computing architecture.

Offloading system \implies Advantages:

Shorten execution time + Reduce energy consumption
Mobile Offloading System

- Mobile cloud computing architecture.
- Offloading system \Rightarrow **Advantages**: Shorten execution time + Reduce energy consumption
- Failures or delays can happen in the network and in the cloud server.
- how long should one wait and when to restart locally?
Program engine and decision algorithm run on mobile device, that interacts with cloud server
Program engine and decision algorithm run on mobile device, that interacts with cloud server

Offloading uses copy of algorithm in the server
Offloading system architecture

- Program engine and decision algorithm run on mobile device, that interacts with cloud server
- Offloading uses copy of algorithm in the server
- Local restart will not offload but executes in mobile device
- Online decision making needs adaptive timeout.
The test bed

- **Mobile Devices**: Samsung GT-S7568, Android 4.0;
- **Wireless Network**: 54M/s WiFi; The route passes 12 hops and the round-trip time is 82ms.
- **Server**: Server with 4 cores (Intel Xeon CPU E5649 2.53 GHz)
The test bed

Mobile Devices: Samsung GT-S7568, Android 4.0;
Wireless Network: 54M/s WiFi The route passes 12 hops and the round-trip time is 82ms.
Server: Server with 4 cores (Intel Xeon CPU E5649 2.53 GHz)
Sample Application: Optical Character Recognition (OCR)
The distribution of the sample values is not identical across time.

OCT: Offloading Task completion time
The distribution of the sample values is not identical across time.

Local computation is usually stable, with very few outliers.
LCT: Local Executed Task completion time
Bad network condition: the curve has an approximately constant slope of $-2 \rightarrow$ a heavy tail.
Bad network condition: the curve has an approximately constant slope of $-2 \rightarrow$ a heavy tail.

Deteriorated network condition: the tail has an exponential decay for long task completion times \rightarrow heavy tail is not clear.
Bad network condition: the curve has an approximately constant slope of $-2 \rightarrow$ a heavy tail.

Deteriorated network condition: the tail has an exponential decay for long task completion times \rightarrow heavy tail is not clear.

Normal network condition: the decrease of the tail is steep \rightarrow no heavy tail.
Bad network condition: the curve has an approximately constant slope of $-2 \rightarrow$ a heavy tail.

Deteriorated network condition: the tail has an exponential decay for long task completion times \rightarrow heavy tail is not clear.

Normal network condition: the decrease of the tail is steep \rightarrow no heavy tail.

Local completion: the tail is almost infinite \rightarrow no heavy tail.
Distribution Fitting Results

- Use Hyperstar for distribution fitting
- Task completion times has a lower threshold T_{min}^o
- Shift histogram to the left, $f_o(t) = f'_o(t - T_{min}^o)$ to avoid zero density at the origin
- $f'_o(t)$ is the PH fitting result
Restart Condition

- \(E[T] < E[T - \tau | T > \tau] \)
 - \(T \): task completion time
 - \(\tau \): restart timeout

Expected completion time less than expected remaining time until completion
Restart Condition

- \(E[T] < E[T - \tau | T > \tau] \)
 - \(T \): task completion time
 - \(\tau \): restart timeout

Expected completion time less than expected remaining time until completion

For one local restart

\[
F(t) = \begin{cases}
F_o(t) & (0 \leq t < \tau) \\
1 - (1 - F_o(\tau))(1 - F_l(t - \tau)) & (\tau \leq t)
\end{cases}
\]

\[
f(t) = \begin{cases}
f_o(t) & (0 \leq t < \tau) \\
(1 - F_o(\tau))f_l(t - \tau) & (\tau \leq t)
\end{cases}
\]

\(f(t) \) and \(F(t) \) are the density and cumulative distribution function
Local Restart Condition

- If $E[T] < E[T_o]$, restart is beneficial.

$$E[T_l] < \frac{\int_\tau^\infty t f_o(t) dt}{1 - F_o(\tau)} - \tau$$

$$E[T_l] < \frac{\int_{\tau - T_{o min}}^\infty t f'_o(t) dt}{1 - F'_o(\tau - T_{o min})} - (\tau - T_{o min})$$

$$g(\delta) = \frac{\int_\delta^\infty t f'_o(t) dt}{1 - F'_o(\delta)} - \delta$$

$$(\delta = \tau - T_{o min})$$
Optimal Restart Timeout

\[g(\delta) > E[T_l], \text{ the local restart is useful} \]
Optimal Restart Timeout

- $g(\delta) > E[T_i]$, the local restart is useful
- The optimal timeout is found when $E[T]$ is minimal.
Dynamic Restart Scheme

$g(\delta)$ and $E[T]$ are estimated from the histogram
Dynamic Restart Scheme

- $g(\delta)$ and $E[T]$ are estimated from the histogram
- Case 1: large items in outlier bucket,
Dynamic Restart Scheme

- $g(\delta)$ and $E[T]$ are estimated from the histogram
- Case 1: large items in outlier bucket, case 2: small items create new bucket,
Dynamic Restart Scheme

- \(g(\delta) \) and \(E[T] \) are estimated from the histogram
- Case 1: large items in outlier bucket, case 2: small items create new bucket, case 3: medium items go into existing buckets.
Dynamic Restart Scheme

- $g(\delta)$ and $E[T]$ are estimated from the histogram.
- Case 1: large items in outlier bucket, case 2: small items create new bucket, case 3: medium items go into existing buckets.
- Dynamic histogram uses partial flush.
Evaluation of the Dynamic Restart

- When $\hat{g}(\delta)_{max} > T_l$ local restarts happen
Evaluation of the Dynamic Restart

When $\hat{g}(\delta)_{max} > T_l$ local restarts happen.

At certain times (evening), dynamic local restart can increase the throughput.
Conclusions

- Mobile offloading is not always beneficial
 - Experiments illustrate the impact of network delays
Conclusions

- Mobile offloading is not always beneficial
 - Experiments illustrate the impact of network delays
- Derive expected completion time under one local restart
 - Can reduce task completion time
Conclusions

- Mobile offloading is not always beneficial
 - Experiments illustrate the impact of network delays
- Derive expected completion time under one local restart
 - Can reduce task completion time
- Dynamic local restart scheme
 - Dynamic histogram adaptively tracks variation of network quality
 - Use dynamic histogram for restart decision and timeout.
Conclusions

- Mobile offloading is not always beneficial
 - Experiments illustrate the impact of network delays

- Derive expected completion time under one local restart
 - Can reduce task completion time

- Dynamic local restart scheme
 - Dynamic histogram adaptively tracks variation of network quality
 - Use dynamic histogram for restart decision and timeout.

- General solution for other applications?
Conclusions

- Mobile offloading is not always beneficial
 - Experiments illustrate the impact of network delays
- Derive expected completion time under one local restart
 - Can reduce task completion time
- Dynamic local restart scheme
 - Dynamic histogram adaptively tracks variation of network quality
 - Use dynamic histogram for restart decision and timeout.
- General solution for other applications?
- Many restarts, mixed local and remote
Thank you.