
LLNL-PRES-666776
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Design and Evaluation of Scalable
Concurrent Queues for Many-Core
Architectures

ICPE 2015

Thomas R. W. Scogland, Wu-chun Feng

February 2nd, 2015

Lawrence Livermore National Laboratory LLNL-PRES-666776
3

Why another concurrent queue?

Lawrence Livermore National Laboratory LLNL-PRES-666776
4

Heterogeneity and many-core are a
fact of life in modern computing

Lawrence Livermore National Laboratory LLNL-PRES-666776
5

Everything from cell phones

By Zach Vega (Own work)
 [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Lawrence Livermore National Laboratory LLNL-PRES-666776
6

To supercomputers

Image Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy

Lawrence Livermore National Laboratory LLNL-PRES-666776
7

Why not existing lock-free queues?
!  Traditional lock-free queues focus on progress over throughput

!  Perfect for over-subscribed systems, but they do not scale

7"

0

500

1000

1500

2000

2500

3 3 6 6 9 9 12 12 15 15 18 18 21 21 24 24 27 27 30 30

O
pe

ra
tio

ns
 p

er
 m

ill
is

ec
on

d

Independent threads

Four Opteron 6134 CPUs

0

500

1000

1500

2000

2500

11 83 155 227 299 371 443 515 587 659 731 803

O
pe

ra
tio

ns
 p

er
 m

ill
is

ec
on

d

Independent threads

One NVIDIA K20c GPU

Lawrence Livermore National Laboratory LLNL-PRES-666776
8

!  Definitions and abstractions
!  Building blocks: Evaluating atomic operations
!  Queue types and modeling
!  Our queue design
!  Performance evaluation
!  Conclusions

Outline

Lawrence Livermore National Laboratory LLNL-PRES-666776
9

!  Work-item: The basic unit of work in OpenCL
•  Groups of work-items execute in lock-step
•  Work-items are not threads

!  Thread: An independently schedulable entity
•  An OS thread on CPUs
•  In OpenCL, defined as a group of work-items of size

“PREFERRED_WORK_GROUP_SIZE_MULTIPLE”

Definitions:
What is a “thread”?

Lawrence Livermore National Laboratory LLNL-PRES-666776
10

!  All operations defined in terms of atomics
!  On CPU:

•  Add: Atomic Fetch-and-add (FAA)
•  Read: Normal load
•  Write: Normal store
•  CAS: Atomic Compare and Swap

!  On OpenCL:
•  Add: Atomic Fetch-and-add (FAA)
•  Read: Atomic Fetch-and-add 0, or atomic_read, or regular

read after flush if available
•  Write: Atomic exchange
•  CAS: Atomic Compare and Swap

Abstractions

Lawrence Livermore National Laboratory LLNL-PRES-666776
11

Device Num.
devices

Cores/
device

Threads/
core

Max.
threads

Max.
achieved

AMD Opteron 6134 4 8 1 32 32
AMD Opteron 6272 2 16 1 32 32
Intel Xeon E5405 2 4 1 8 8
Intel Xeon X5680 1 12 2 24 24
Intel Core i5-3400 1 4 1 4 4

Experimental Setup:
Hardware: CPUs

Lawrence Livermore National Laboratory LLNL-PRES-666776
12

Device Num.
devices

Cores/
device

Threads/
core

Max.
threads

Max.
achieved

AMD HD5870 1 20 24 496 140
AMD HD7970 1 32 40 1280 386
AMD HD7990 1 (of 2 dies) 32 40 1280 1020
Intel Xeon Phi
P1750

1 61 4 244 244

NVIDIA GTX 280 1 30 32 960 960
NVIDIA Tesla
C2070

1 14 32 448 448

NVIDIA Tesla K20c 1 13 64 832 832

Experimental Setup:
Hardware: GPUs/Co-processors

Lawrence Livermore National Laboratory LLNL-PRES-666776
13

!  Debian Wheezy Linux 64-bit kernel version 3.2
!  NVIDIA driver v. 313.3 with CUDA SDK 5.0
!  AMD fglrx driver v. 9.1.11 and APP SDK v. 2.8
!  Intel Xeon Phi driver MPSS gold 3
!  CPU and Phi OpenMP use Intel ICC v. 13.0.1

Experimental setup:
Software

Lawrence Livermore National Laboratory LLNL-PRES-666776
14

Experimental setup:
Detecting the real number of threads

of the atomic-operation throughput of many-core architec-
tures. Section 5 presents the design of our queue and its
three interfaces while Section 6 discusses linearizability [7].
Section 7 presents our experimental setup and benchmarks
while Section 8 presents the results of our experiments. Sec-
tion 9 presents concluding remarks and future work.

2. BACKGROUND
In order to discuss the properties of our target architec-

tures in a uniform manner, we first present our abstraction
of the concurrency and memory model that we use across
devices. This section discusses the abstraction that we em-
ploy in this paper in order to discuss OpenMP on CPUs and
OpenCL on CPUs, GPUs and co-processors all interchange-
ably, along with our microbenchmark evaluation of atomic
operations that make this possible across each architecture.

2.1 Threading Abstraction
While the threading models of OpenMP and OpenCL are

significantly di↵erent, they can be reconciled. An OpenCL
kernel runs a set of work-groups, each consisting of work-
items or, as they are sometimes unfortunately misnamed
“threads.” We exclusively use the term “work-item” to refer
to these throughout this paper. Work-items are usually a
single lane of a vector computation, rather than an indepen-
dent thread of control. In OpenMP, there is no observable
equivalent to the work-item, though a single iteration of a
loop parallelized by an omp simd directive would be closest.

OpenCL does have an equivalent to the OpenMP thread
however, but its interpretation changes from device to de-
vice. In NVIDIA GPUs, one thread is a “warp,” composed
of 32 work-items. In AMD GPUs, a thread is a “wavefront”
of 32 or 64 work-items. When run on CPUs, work-items
may be either operating system threads or individual lanes
of vector calculations as on GPUs. For common CPUs, this
means each thread may be composed of one to eight work-
items. The width of the thread-equivalent used in a com-
piled kernel in OpenCL can be reliably determined based on
the OpenCL 1.1 kernel work group info property “preferred
work group size multiple,” which is what we use in our im-
plementations. To establish consistent terminology, we use
the term thread to refer to OpenMP threads on the CPU and
Xeon Phi or independent groups of work-items in OpenCL.
Work-items within a thread must execute in lockstep. It is
unsafe for more than one work-item in a thread to interact
with a concurrent data structure simultaneously. When a
thread accesses any queue in this paper, only one work-item
is active.

The additional wrinkle is that OpenCL has no mechanism
to get the number of threads that actually run concurrently.
While a user can request any number of threads, the num-
ber that run concurrently can be anywhere from one to the
requested number. We add counters as depicted in Figure 1
to all benchmarks to count the number of threads that exist
before the first thread finishes execution, which is a reliable
upper bound on the number of concurrent working threads
regardless of the behavior of the OpenCL runtime.

2.2 Memory Model
CPUmodels like OpenMP depend on cache-coherent shared

memory for correctness. The OpenCL standard does not
provide a su�ciently strong coherence model or a mem-
ory flush that can be used to implement one. The stan-

void test(unsigned *num_threads, unsigned *present){
if(atomic_read(num_threads) != 0)

return;
atomic_fetch_and_add(present,1);
run_benchmark();
atomic_compare_and_swap(num_threads, 0, atomic_read(present));

}

Figure 1: Design of concurrency detection in OpenCL bench-
marks

dard states that “there are no guarantees of memory consis-
tency between di↵erent work-groups executing a kernel [1].”
Writes in di↵erent work-groups are only guaranteed to be
synchronized at the end of a kernel, and are thus available in
subsequent kernels. The standard specifically allows writes
to global memory to never become visible to other work-
groups within a single kernel.
The exception is atomic operations, available since OpenCL

1.1, which are guaranteed to be visible and coherent across
work-groups within a kernel as long as all work-groups are
executing on the same device. Thus, every write and every
read to global memory that is shared between work-groups
must be atomic to ensure correctness in OpenCL. In prac-
tice, some OpenCL devices support a more coherent memory
model than this, but it is not required and several architec-
tures do not. For example, NVIDIA GPUs present a weak
coherence model, but o↵er a fence/flush through the PTX
instruction membar.gl, but this is not standard OpenCL and
must be used carefully. AMD GPUs have similar instruc-
tions at the ISA level but inline assembly only accepts the
intermediate CAL language, which has no equivalent.
For consistency, we express all algorithms as a set of ab-

stract atomically coherent instructions. In OpenCL, all op-
erations are implemented with explicit atomic intrinsics, in-
cluding load and store, to maintain coherence. In the CPU
implementation, atomic reads and writes are standard load
and store instructions, while fetch-and-add (FAA) and compare-
and-swap (CAS) use the sequentially consistent memory or-
dering. The algorithm does not intrinsically require that
the ordering be that strong, using the relaxed model on in-
crements with matching acquire and release on reads and
exchanges would be su�cient. We use the stronger consis-
tency model because it is the default in OpenCL 2.0 and
the only model exposed in OpenCL 1.2, which we used to
implement our non-CPU device tests.

3. RELATED WORK
Concurrent queues have been studied for decades, nearly

as long as computers with multiple computational units have
existed to run them. We will elide some of the early history
and refer the reader to the surveys provided by the papers
referenced below, especially the Michael and Scott [11] sur-
vey, which provides significant discussion of early designs.
Array queues. The array queue proposed by Gottlieb et

al. [4] in 1983 is notable for scaling near-linearly to 100 cores
in simulation at the time. The Gottlieb queue can scale to
as many threads as the hardware can run concurrently due
to the use of a a pair of counters to select a location and
fine-grained locking on each location in the queue. Unfortu-
nately, however, the Gottlieb queue has been proven to be
non-linearizable [2] due to the counters, which can cause the
queue to appear empty or full spuriously. Orozco et al. [13]
present two related array queues called the Circular Bu↵er
Queue (CB-Queue) and the High-Throughput Queue (HT-

Check if kernel is complete

Increment number of threads, returns TID

Set kernel complete

Lawrence Livermore National Laboratory LLNL-PRES-666776
15

!  Definitions, abstractions and experimental setup
!  Building blocks: Evaluating atomic operations
!  Queue types and modeling
!  Our queue design
!  Performance evaluation
!  Conclusions

Outline

Lawrence Livermore National Laboratory LLNL-PRES-666776
16

Atomic performance test

kernel void cas_test(__global unsigned * in, __global unsigned * out, unsigned iterations){!
 const unsigned tid = (get_local_id(1)*get_local_size(0)) + get_local_id(0);!
 const unsigned gid = (get_group_id(1)*get_local_size(0)) + get_group_id(0);!
 __local unsigned success;!
 unsigned my_success = 0;!
!
 if(tid == 0){!
 unsigned prev = 0; !
 for(size_t i=0; i < iterations; ++i){!
 prev = atomic_add(in,0);!
 my_success += atomic_cmpxchg(in,prev,prev+1) == prev ? 1 : 0; !
 } !
 out[gid] = my_success;!
 } !
}

Lawrence Livermore National Laboratory LLNL-PRES-666776
17

Atomic operation performance

17"Independent threads Th
ro

ug
hp

ut
 in

 m
ill

io
n

op
er

at
io

ns
 p

er
 s

ec
on

d

●

●

●
● ●

●
● ●● ●●● ●

● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA GTX 280 Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

250

500

750

0

20

40

60

80

0

1

2

3

4

0

200

400

600

30

60

90

0

5

10

15

10

20

30

40

50

0 200 400 600 50 100 150 200 0 100 200 300 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threadsTh

ro
ug

hp
ut

 in
 m

illi
on

 o
pe

ra
tio

ns
 p

er
 s

ec
on

d

Operation ●Attempted CAS FAA READ Successful CAS WRITE XCHG

●

●

●
● ●

●
● ●● ●●● ●

● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA GTX 280 Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

250

500

750

0

20

40

60

80

0

1

2

3

4

0

200

400

600

30

60

90

0

5

10

15

10

20

30

40

50

0 200 400 600 50 100 150 200 0 100 200 300 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threadsT

hr
ou

gh
pu

t i
n

m
ill

io
n

op
er

at
io

ns
 p

er
 s

ec
on

d

Operation ●Attempted CAS FAA READ Successful CAS WRITE XCHG

●

●

●
● ●

●
● ●● ●●● ●

● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA GTX 280 Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

250

500

750

0

20

40

60

80

0

1

2

3

4

0

200

400

600

30

60

90

0

5

10

15

10

20

30

40

50

0 200 400 600 50 100 150 200 0 100 200 300 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threadsT

hr
ou

gh
pu

t i
n

m
ill

io
n

op
er

at
io

ns
 p

er
 s

ec
on

d

Operation ●Attempted CAS FAA READ Successful CAS WRITE XCHG

●

●

●
● ●

●
● ●● ●●● ●

● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA GTX 280 Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

250

500

750

0

20

40

60

80

0

1

2

3

4

0

200

400

600

30

60

90

0

5

10

15

10

20

30

40

50

0 200 400 600 50 100 150 200 0 100 200 300 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threadsT

hr
ou

gh
pu

t i
n

m
ill

io
n

op
er

at
io

ns
 p

er
 s

ec
on

d

Operation ●Attempted CAS FAA READ Successful CAS WRITE XCHG

●

●

●
● ●

●
● ●● ●●● ●

● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●

●

● ● ● ● ● ● ●

●

●

●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA GTX 280 Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

250

500

750

0

20

40

60

80

0

1

2

3

4

0

200

400

600

30

60

90

0

5

10

15

10

20

30

40

50

0 200 400 600 50 100 150 200 0 100 200 300 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threadsT

hr
ou

gh
pu

t i
n

m
ill

io
n

op
er

at
io

ns
 p

er
 s

ec
on

d

Operation ●Attempted CAS FAA READ Successful CAS WRITE XCHG

Successful CAS rate
decreases with number of

threads!

Other atomic operations
scale up with the thread

count

For more architectures, see the paper

CAS: 1,478/ms
FAA: 859,524/ms

 FAA is 581 times faster

Lawrence Livermore National Laboratory LLNL-PRES-666776
18

!  Definitions and abstractions
!  Building blocks: Evaluating atomic operations
!  Queue types and modeling
!  Our queue design
!  Performance evaluation
!  Conclusions

Outline

Lawrence Livermore National Laboratory LLNL-PRES-666776
19

!  All concurrent queues require either:
•  Locks, or
•  Atomic operations

!  Model result: Throughput (T) for a given number of
threads (t)

!  Terms, average latency of constituent atomics:
•  Read: r
•  Write: w
•  Successful contended CAS: c
•  Attempted CAS: C

General modeling of queues

Lawrence Livermore National Laboratory LLNL-PRES-666776
20

!  Contended CAS
•  MS queue and TZ queue

!  Un-contended CAS
•  LCRQ

!  Combining
•  FC queue

!  FAA or blocking array
•  CB queue and our queue

Queue types

Tt = 2
rt ×2+ ct()+ (rt +wt + ct)

Tt = 1
at + rt +Ct()

Tt = 2
r1+w1×2()+ (r1×2+w1)

Tt = 2
at + rt +wt()+ (at +wt ×2)

Lawrence Livermore National Laboratory LLNL-PRES-666776
25

Modeled queue throughput

25"
Independent threads Th

ro
ug

hp
ut

 in
 m

ill
io

n
op

er
at

io
ns

 p
er

 s
ec

on
d

For more architectures, see the paper

● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ●

● ● ●

●
●

●

●

●
●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

100

200

300

5

10

15

20

0

50

100

150

200

15

20

25

30

1

2

3

4

5

6

9

12

15

18

0 200 400 600 50 100 150 200 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threads

Th
ro

ug
hp

ut
 in

 m
illi

on
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Operation ●Combining queue Contended CAS queue FAA queue Un−Contended CAS queue

● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ●

● ● ●

●
●

●

●

●
●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

100

200

300

5

10

15

20

0

50

100

150

200

15

20

25

30

1

2

3

4

5

6

9

12

15

18

0 200 400 600 50 100 150 200 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threads

Th
ro

ug
hp

ut
 in

 m
illi

on
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Operation ●Combining queue Contended CAS queue FAA queue Un−Contended CAS queue

2x Opteron 6272

● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ●

● ● ●

●
●

●

●

●
●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

100

200

300

5

10

15

20

0

50

100

150

200

15

20

25

30

1

2

3

4

5

6

9

12

15

18

0 200 400 600 50 100 150 200 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threads

Th
ro

ug
hp

ut
 in

 m
illi

on
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Operation ●Combining queue Contended CAS queue FAA queue Un−Contended CAS queue

Intel Xeon Phi

● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ●

● ● ●

●
●

●

●

●
●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

100

200

300

5

10

15

20

0

50

100

150

200

15

20

25

30

1

2

3

4

5

6

9

12

15

18

0 200 400 600 50 100 150 200 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threads

Th
ro

ug
hp

ut
 in

 m
illi

on
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Operation ●Combining queue Contended CAS queue FAA queue Un−Contended CAS queue

NVIDIA K20c

● ● ● ● ● ● ● ● ● ●

● ●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

● ●
●

●

●
●

● ● ●
● ●

● ● ●

●
●

●

●

●
●

●

Acc., AMD HD7970 Acc., Intel Xeon Phi Acc., NVIDIA Tesla K20c CPU, 1 − Intel Xeon X5680 CPU, 2 − AMD Opteron 6272s CPU, 2 − Intel Xeon E5405s

0

100

200

300

5

10

15

20

0

50

100

150

200

15

20

25

30

1

2

3

4

5

6

9

12

15

18

0 200 400 600 50 100 150 200 0 200 400 600 5 10 15 20 25 10 20 30 2 4 6 8
Concurrent threads

Th
ro

ug
hp

ut
 in

 m
illi

on
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d

Operation ●Combining queue Contended CAS queue FAA queue Un−Contended CAS queue

AMD HD7970

Combining queue
performance is independent

of thread count

Contended-CAS queue
performance degrades as

threads increase

Un-contended-CAS and
FAA queues scale with

additional threads

Lawrence Livermore National Laboratory LLNL-PRES-666776
26

!  Definitions and abstractions
!  Building blocks: Evaluating atomic operations
!  Queue types and modeling
!  Our queue design
!  Performance evaluation
!  Conclusions

Outline

Lawrence Livermore National Laboratory LLNL-PRES-666776
27

Our queue design:
Goals
!  Scale well on many-core architectures

•  Avoid contended CAS!

!  Maintain Linearizability and FIFO ordering

!  Allow the status of the queue to be inspected

Lawrence Livermore National Laboratory LLNL-PRES-666776
29

!  Blocking interface: The fast, concurrent interface
•  enqueue(q, data) -> success or closed
•  dequeue(q, &data) -> success or closed

!  Non-waiting interface:
•  enqueue_nw(q, data) -> success, not_ready or closed
•  dequeue_nw(q, &data) -> success, not_ready or closed

!  Status inspection interface
•  distance(q) -> the distance between head and tail, corrected for

rollover
•  waiting_enqueuers(q) -> number of enqueuers blocking
•  waiting_dequeuers(q) -> number of dequeuers blocking
•  is_full(q) -> true if full, else false
•  is_empty(q) -> true if empty, else false

Our queue design:
Solution, divide the interfaces

Lawrence Livermore National Laboratory LLNL-PRES-666776
31

Our queue’s blocking behavior:
Enqueue example: Get targets with FAA

31"

0 3 Tail Head

Thread 1 Thread 2 Thread 3
4 0 5 0 6 0

0 0 0 0 0 0 0 0 0 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
32

Our queue’s blocking behavior:
Enqueue example: Get targets with FAA

32"

0 3 Tail Head

Thread 1 Thread 2 Thread 3
4 0 5 0 6 0

0 0 0 0 0 0 0 0 0 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
33

Our queue’s blocking behavior:
Enqueue example: Get targets with FAA

33"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 0 0 0 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
34

Our queue’s blocking behavior:
Enqueue example: Write values

34"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 0 0 0 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
35

Our queue’s blocking behavior:
Enqueue example: Write values

35"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 0 0 0 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
36

Our queue’s blocking behavior:
Enqueue example: Write values

36"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 5 6 4 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
37

Our queue’s blocking behavior:
Enqueue example: Update slots

37"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 5 6 4 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
38

Our queue’s blocking behavior:
Enqueue example: Update slots

38"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 5 6 4 1 2 3

Slot array 0 0 0 0 0 0 0 0 0 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
39

Our queue’s blocking behavior:
Enqueue example: Update slots

39"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 5 6 4 1 2 3

Slot array 0 0 0 0 0 0 1 1 1 1 1 1
Value array

Lawrence Livermore National Laboratory LLNL-PRES-666776
40

Our queue’s blocking behavior:
Enqueue example: Update slots

40"

0 6 Tail Head

Thread 1 Thread 2 Thread 3
4 3 5 5 6 4

0 0 0 0 0 0 5 6 4 1 2 3

Slot array 0 0 0 0 0 0 1 1 1 1 1 1
Value array

Safe and parallel!
For complete

implementation details,
see the paper

Lawrence Livermore National Laboratory LLNL-PRES-666776
44

!  Definitions and abstractions
!  Building blocks: Evaluating atomic operations
!  Queue types and modeling
!  Our queue design
!  Performance evaluation
!  Conclusions

Outline

Lawrence Livermore National Laboratory LLNL-PRES-666776
45

Evaluation:
Queues Under Consideration
!  Michael & Scott (MS) queue: Contended CAS

•  Storage: Unbounded linked list
•  Progress guarantee: lock-free
•  Coherence mechanism: CAS on head and tail

!  Tsigas & Zhang (TZ) queue: Contended CAS
•  Storage: Bounded array
•  Progress guarantee: lock-free
•  Coherence mechanism: CAS on head and tail

!  Flat-combining (FC) queue: Combining
•  Storage: Unbounded linked list
•  Progress guarantee: lock-free, *blocking*
•  Coherence mechanism: Serialization, single worker thread at a time

!  Linked Concurrent Ring Queue (LCRQ): Un-contended CAS
•  Storage: Unbounded linked-list of blocking array-based queues
•  Progress guarantee: lock-free
•  Coherence mechanism: Double-wide CAS (precludes implementation on

AMD GPUs)

Lawrence Livermore National Laboratory LLNL-PRES-666776
46

Evaluation:
Test loops
!  Matching enqueue/dequeue:

•  All threads:
—  Dequeue a value
—  Work on the value for 100 iterations
—  Enqueue the new value
—  Work out-of-band for 100 iterations

!  Producer/consumer:
•  25% of all threads:
—  Enqueue a value
—  Work for 100 iterations

•  The remaining 75%:
—  Dequeue a value
—  Work for 100 iterations

!  All tests run for 5 seconds and are self-stopped on the device

Lawrence Livermore National Laboratory LLNL-PRES-666776
49

●
●

●
●

● ●
● ● ● ●

●

●

●
●

● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
●

● ●

●
● ●

2 − AMD Opteron 6272s 2 − Intel Xeon E5405s 4 − AMD Opteron 6134s Intel Xeon X5680

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

Evaluation:
CPU performance

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

Independent threads

●
●

●
●

● ●
● ● ● ●

●

●

●
●

● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
●

● ●

●
● ●

Matching, 2 − AMD Opteron 6272s Matching, 2 − Intel Xeon E5405s Matching, 4 − AMD Opteron 6134s Matching, Intel Xeon X5680

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

●

●

● ●

●
● ●

●
● ●

●

●

●

●

●

● ●

●

● ●

● ● ●
●

●

●

●

●

●
● ●

●
●

●

● ●
●

2 − AMD Opteron 6272s 2 − Intel Xeon E5405s 4 − AMD Opteron 6134s Intel Xeon X5680

2

4

6

1

2

3

4

5

1

2

3

4

2.5

5.0

7.5

10.0

12.5

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

●
●

●
●

● ●
● ● ● ●

●

●

●
●

● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
●

● ●

●
● ●

Matching, 2 − AMD Opteron 6272s Matching, 2 − Intel Xeon E5405s Matching, 4 − AMD Opteron 6134s Matching, Intel Xeon X5680

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

●

●

● ●

●
● ●

●
● ●

●

●

●

●

●

● ●

●

● ●

● ● ●
●

●

●

●

●

●
● ●

●
●

●

● ●
●

2 − AMD Opteron 6272s 2 − Intel Xeon E5405s 4 − AMD Opteron 6134s Intel Xeon X5680

2

4

6

1

2

3

4

5

1

2

3

4

2.5

5.0

7.5

10.0

12.5

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

Matching tests Producer/Consumer tests

Lawrence Livermore National Laboratory LLNL-PRES-666776
50

Evaluation:
CPU performance: Oversubscribing

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

Independent threads

●
●

●
●

● ●
● ● ● ●

●

●

●
●

● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
●

● ●

●
● ●

Matching, 2 − AMD Opteron 6272s Matching, 2 − Intel Xeon E5405s Matching, 4 − AMD Opteron 6134s Matching, Intel Xeon X5680

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

●

●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

Producer/Consumer Matching Enq/Deq

0

5

10

15

0

5

10

15

0 50 100 0 50 100
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue ●

Flat−Combining queue
LCRQ−32bit
Michael and Scott queue

New − Blocking Enq&Deq
New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

●

●
● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

Producer/Consumer Matching Enq/Deq

0

5

10

15

0

5

10

15

0 50 100 0 50 100
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue ●

Flat−Combining queue
LCRQ−32bit
Michael and Scott queue

New − Blocking Enq&Deq
New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

Lawrence Livermore National Laboratory LLNL-PRES-666776
53

● ● ● ●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●
●

●
● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

16

2−4

2−2

1

4

16

64

256

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

8

2−8

2−6

2−4

2−2

1

4

2−2

1

4

16

2−2

1

4

16

64

256

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800
Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(L
og

 2
)

Queue ●Flat−Combining queue LCRQ−32bit Michael and Scott queue New − Blocking Enq&Deq New − Non−waiting Deq, Blocking Enq New − Non−waiting Enq&Deq Tsigas and Zhang queue

Evaluation: Acc. performance:
Current-Gen: Matching benchmark

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(lo
g2

)

Independent threads

●
●

●
●

● ●
● ● ● ●

●

●

●
●

● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
●

● ●

●
● ●

Matching, 2 − AMD Opteron 6272s Matching, 2 − Intel Xeon E5405s Matching, 4 − AMD Opteron 6134s Matching, Intel Xeon X5680

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

● ● ● ●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●
●

●
● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

16

2−4

2−2

1

4

16

64

256

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

8

2−8

2−6

2−4

2−2

1

4

2−2

1

4

16

2−2

1

4

16

64

256

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800
Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(L
og

 2
)

Queue ●Flat−Combining queue LCRQ−32bit Michael and Scott queue New − Blocking Enq&Deq New − Non−waiting Deq, Blocking Enq New − Non−waiting Enq&Deq Tsigas and Zhang queue

● ● ● ●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

● ● ● ● ● ●

●

●

●
●

●
● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

16

2−4

2−2

1

4

16

64

256

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

8

2−8

2−6

2−4

2−2

1

4

2−2

1

4

16

2−2

1

4

16

64

256

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800
Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(L
og

 2
)

Queue ●Flat−Combining queue LCRQ−32bit Michael and Scott queue New − Blocking Enq&Deq New − Non−waiting Deq, Blocking Enq New − Non−waiting Enq&Deq Tsigas and Zhang queue

LCRQ lags behind by only
17%

1,408 times speedup from
MS-queue to the blocking

queue

Lawrence Livermore National Laboratory LLNL-PRES-666776
54

●
●

●

●

●

●
● ● ●

●

●

●

●

●

● ●
● ●

●
●

● ●

●
●

●
●

● ●

● ●

●

●
●

● ● ● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

2−4

2−2

1

4

16

64

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

2−8

2−6

2−4

2−2

1

2−8

2−6

2−4

2−2

1

4

16

2−8

2−6

2−4

2−2

1

4

16

64

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800
Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(L
og

 2
)

Queue ●Flat−Combining queue LCRQ−32bit Michael and Scott queue New − Blocking Enq&Deq New − Non−waiting Deq, Blocking Enq New − Non−waiting Enq&Deq Tsigas and Zhang queue

●
●

●

●

●

●
● ● ●

●

●

●

●

●

● ●
● ●

●
●

● ●

●
●

●
●

● ●

● ●

●

●
●

● ● ● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

2−4

2−2

1

4

16

64

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

2−8

2−6

2−4

2−2

1

2−8

2−6

2−4

2−2

1

4

16

2−8

2−6

2−4

2−2

1

4

16

64

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800
Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(L
og

 2
)

Queue ●Flat−Combining queue LCRQ−32bit Michael and Scott queue New − Blocking Enq&Deq New − Non−waiting Deq, Blocking Enq New − Non−waiting Enq&Deq Tsigas and Zhang queue

●
●

●

●

●

●
● ● ●

●

●

●

●

●

● ●
● ●

●
●

● ●

●
●

●
●

● ●

● ●

●

●
●

● ● ● ● ● ●

AMD HD5870 AMD HD7970 AMD HD7990 Intel Xeon Phi

NVIDIA GeForce GTX 280 NVIDIA Tesla C2070 NVIDIA Tesla K20c

2−6

2−4

2−2

1

4

2−4

2−2

1

4

16

64

2−4

2−2

1

4

16

64

256

2−3

2−2

2−1

1

2

4

2−8

2−6

2−4

2−2

1

2−8

2−6

2−4

2−2

1

4

16

2−8

2−6

2−4

2−2

1

4

16

64

0 25 50 75 100 125 0 100 200 300 0 250 500 750 1000 50 100 150 200

0 250 500 750 0 100 200 300 400 0 200 400 600 800
Independent threads

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(L
og

 2
)

Queue ●Flat−Combining queue LCRQ−32bit Michael and Scott queue New − Blocking Enq&Deq New − Non−waiting Deq, Blocking Enq New − Non−waiting Enq&Deq Tsigas and Zhang queue

Evaluation: Acc. performance:
Current-Gen: Prod./Cons.

O
pe

ra
tio

ns
 in

 m
ill

io
ns

 p
er

 s
ec

on
d

(lo
g2

)

Independent threads

●
●

●
●

● ●
● ● ● ●

●

●

●
●

● ●

●

●
●

● ● ● ● ● ● ●

●
●

● ● ●
●

● ●

●
● ●

Matching, 2 − AMD Opteron 6272s Matching, 2 − Intel Xeon E5405s Matching, 4 − AMD Opteron 6134s Matching, Intel Xeon X5680

1

2

3

4

5

3

4

5

6

1

2

3

5

10

15

10 20 30 3 4 5 6 7 8 10 20 30 5 10 15 20 25
Independent threads

O
pe

ra
tio

ns
 in

 m
illi

on
s

pe
r s

ec
on

d

Queue
●

Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

LCRQ drops to
2,700 ops/second

33,043.91 times more ops
with blocking than LCRQ in

this case

Lawrence Livermore National Laboratory LLNL-PRES-666776
56

!  Designing concurrent data-structures for
throughput is important in modern architectures

!  CAS can be dangerous with enough threads
!  Our queue shows between a 1.5x and 1000x

speedup over state of the practice for many-core
architectures

!  Allowing blocking can be beneficial!

Conclusions

