
LLNL-PRES-666776 
This work was performed under the auspices of the U.S. Department  
of Energy by Lawrence Livermore National Laboratory under Contract  
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC 

Design and Evaluation of Scalable 
Concurrent Queues for Many-Core 
Architectures  

ICPE 2015 

Thomas R. W. Scogland, Wu-chun Feng 

February 2nd, 2015 



Lawrence Livermore National Laboratory LLNL-PRES-666776 
3 

Why another concurrent queue? 
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Heterogeneity and many-core are a 
fact of life in modern computing 
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Everything from cell phones 

By Zach Vega (Own work) 
 [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons 
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To supercomputers 

Image Courtesy of Oak Ridge National Laboratory, U.S. Dept. of Energy 
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Why not existing lock-free queues? 
!  Traditional lock-free queues focus on progress over throughput 

!  Perfect for over-subscribed systems, but they do not scale 
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!  Definitions and abstractions 
!  Building blocks: Evaluating atomic operations 
!  Queue types and modeling 
!  Our queue design 
!  Performance evaluation 
!  Conclusions 

Outline 
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!  Work-item: The basic unit of work in OpenCL 
•  Groups of work-items execute in lock-step 
•  Work-items are not threads 

!  Thread: An independently schedulable entity 
•  An OS thread on CPUs 
•  In OpenCL, defined as a group of work-items of size 

“PREFERRED_WORK_GROUP_SIZE_MULTIPLE” 

Definitions: 
What is a “thread”? 
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!  All operations defined in terms of atomics 
!  On CPU:  

•  Add: Atomic Fetch-and-add (FAA) 
•  Read: Normal load 
•  Write: Normal store 
•  CAS: Atomic Compare and Swap 

!  On OpenCL:  
•  Add: Atomic Fetch-and-add (FAA) 
•  Read: Atomic Fetch-and-add 0, or atomic_read, or regular 

read after flush if available 
•  Write: Atomic exchange 
•  CAS: Atomic Compare and Swap 

Abstractions 
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Device Num. 
devices 

Cores/
device 

Threads/
core 

Max. 
threads 

Max. 
achieved 

AMD Opteron 6134 4 8 1 32 32 
AMD Opteron 6272 2 16 1 32 32 
Intel Xeon E5405 2 4 1 8 8 
Intel Xeon X5680 1 12 2 24 24 
Intel Core i5-3400 1 4 1 4 4 

Experimental Setup:  
Hardware: CPUs 
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Device Num. 
devices 

Cores/
device 

Threads/
core 

Max. 
threads 

Max. 
achieved 

AMD HD5870 1 20 24 496 140 
AMD HD7970 1 32 40 1280 386 
AMD HD7990 1 (of 2 dies) 32 40 1280 1020 
Intel Xeon Phi 
P1750 

1 61 4 244 244 

NVIDIA GTX 280 1 30 32 960 960 
NVIDIA Tesla 
C2070 

1 14 32 448 448 

NVIDIA Tesla K20c 1 13 64 832 832 

Experimental Setup:  
Hardware: GPUs/Co-processors 
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!  Debian Wheezy Linux 64-bit kernel version 3.2 
!  NVIDIA driver v. 313.3 with CUDA SDK 5.0 
!  AMD fglrx driver v. 9.1.11 and APP SDK  v. 2.8 
!  Intel Xeon Phi driver MPSS gold 3 
!  CPU and Phi OpenMP use Intel ICC v. 13.0.1 

Experimental setup: 
Software 
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Experimental setup: 
Detecting the real number of threads 

of the atomic-operation throughput of many-core architec-
tures. Section 5 presents the design of our queue and its
three interfaces while Section 6 discusses linearizability [7].
Section 7 presents our experimental setup and benchmarks
while Section 8 presents the results of our experiments. Sec-
tion 9 presents concluding remarks and future work.

2. BACKGROUND
In order to discuss the properties of our target architec-

tures in a uniform manner, we first present our abstraction
of the concurrency and memory model that we use across
devices. This section discusses the abstraction that we em-
ploy in this paper in order to discuss OpenMP on CPUs and
OpenCL on CPUs, GPUs and co-processors all interchange-
ably, along with our microbenchmark evaluation of atomic
operations that make this possible across each architecture.

2.1 Threading Abstraction
While the threading models of OpenMP and OpenCL are

significantly di↵erent, they can be reconciled. An OpenCL
kernel runs a set of work-groups, each consisting of work-
items or, as they are sometimes unfortunately misnamed
“threads.” We exclusively use the term “work-item” to refer
to these throughout this paper. Work-items are usually a
single lane of a vector computation, rather than an indepen-
dent thread of control. In OpenMP, there is no observable
equivalent to the work-item, though a single iteration of a
loop parallelized by an omp simd directive would be closest.

OpenCL does have an equivalent to the OpenMP thread
however, but its interpretation changes from device to de-
vice. In NVIDIA GPUs, one thread is a “warp,” composed
of 32 work-items. In AMD GPUs, a thread is a “wavefront”
of 32 or 64 work-items. When run on CPUs, work-items
may be either operating system threads or individual lanes
of vector calculations as on GPUs. For common CPUs, this
means each thread may be composed of one to eight work-
items. The width of the thread-equivalent used in a com-
piled kernel in OpenCL can be reliably determined based on
the OpenCL 1.1 kernel work group info property “preferred
work group size multiple,” which is what we use in our im-
plementations. To establish consistent terminology, we use
the term thread to refer to OpenMP threads on the CPU and
Xeon Phi or independent groups of work-items in OpenCL.
Work-items within a thread must execute in lockstep. It is
unsafe for more than one work-item in a thread to interact
with a concurrent data structure simultaneously. When a
thread accesses any queue in this paper, only one work-item
is active.

The additional wrinkle is that OpenCL has no mechanism
to get the number of threads that actually run concurrently.
While a user can request any number of threads, the num-
ber that run concurrently can be anywhere from one to the
requested number. We add counters as depicted in Figure 1
to all benchmarks to count the number of threads that exist
before the first thread finishes execution, which is a reliable
upper bound on the number of concurrent working threads
regardless of the behavior of the OpenCL runtime.

2.2 Memory Model
CPUmodels like OpenMP depend on cache-coherent shared

memory for correctness. The OpenCL standard does not
provide a su�ciently strong coherence model or a mem-
ory flush that can be used to implement one. The stan-

void test(unsigned *num_threads, unsigned *present){
if(atomic_read(num_threads) != 0)

return;
atomic_fetch_and_add(present,1);
run_benchmark();
atomic_compare_and_swap(num_threads, 0, atomic_read(present));

}

Figure 1: Design of concurrency detection in OpenCL bench-
marks

dard states that “there are no guarantees of memory consis-
tency between di↵erent work-groups executing a kernel [1].”
Writes in di↵erent work-groups are only guaranteed to be
synchronized at the end of a kernel, and are thus available in
subsequent kernels. The standard specifically allows writes
to global memory to never become visible to other work-
groups within a single kernel.
The exception is atomic operations, available since OpenCL

1.1, which are guaranteed to be visible and coherent across
work-groups within a kernel as long as all work-groups are
executing on the same device. Thus, every write and every
read to global memory that is shared between work-groups
must be atomic to ensure correctness in OpenCL. In prac-
tice, some OpenCL devices support a more coherent memory
model than this, but it is not required and several architec-
tures do not. For example, NVIDIA GPUs present a weak
coherence model, but o↵er a fence/flush through the PTX
instruction membar.gl, but this is not standard OpenCL and
must be used carefully. AMD GPUs have similar instruc-
tions at the ISA level but inline assembly only accepts the
intermediate CAL language, which has no equivalent.
For consistency, we express all algorithms as a set of ab-

stract atomically coherent instructions. In OpenCL, all op-
erations are implemented with explicit atomic intrinsics, in-
cluding load and store, to maintain coherence. In the CPU
implementation, atomic reads and writes are standard load
and store instructions, while fetch-and-add (FAA) and compare-
and-swap (CAS) use the sequentially consistent memory or-
dering. The algorithm does not intrinsically require that
the ordering be that strong, using the relaxed model on in-
crements with matching acquire and release on reads and
exchanges would be su�cient. We use the stronger consis-
tency model because it is the default in OpenCL 2.0 and
the only model exposed in OpenCL 1.2, which we used to
implement our non-CPU device tests.

3. RELATED WORK
Concurrent queues have been studied for decades, nearly

as long as computers with multiple computational units have
existed to run them. We will elide some of the early history
and refer the reader to the surveys provided by the papers
referenced below, especially the Michael and Scott [11] sur-
vey, which provides significant discussion of early designs.
Array queues. The array queue proposed by Gottlieb et

al. [4] in 1983 is notable for scaling near-linearly to 100 cores
in simulation at the time. The Gottlieb queue can scale to
as many threads as the hardware can run concurrently due
to the use of a a pair of counters to select a location and
fine-grained locking on each location in the queue. Unfortu-
nately, however, the Gottlieb queue has been proven to be
non-linearizable [2] due to the counters, which can cause the
queue to appear empty or full spuriously. Orozco et al. [13]
present two related array queues called the Circular Bu↵er
Queue (CB-Queue) and the High-Throughput Queue (HT-

Check if kernel is complete 

Increment number of threads, returns TID 

Set kernel complete 
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!  Definitions, abstractions and experimental setup 
!  Building blocks: Evaluating atomic operations 
!  Queue types and modeling 
!  Our queue design 
!  Performance evaluation 
!  Conclusions 

Outline 
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Atomic performance test 

kernel void cas_test(__global unsigned * in, __global unsigned * out, unsigned iterations){!
  const unsigned tid = (get_local_id(1)*get_local_size(0)) + get_local_id(0);!
  const unsigned gid = (get_group_id(1)*get_local_size(0)) + get_group_id(0);!
  __local unsigned success;!
  unsigned my_success = 0;!
!
  if(tid == 0){!
    unsigned prev = 0;     !
    for(size_t i=0; i < iterations; ++i){!
      prev = atomic_add(in,0);!
      my_success += atomic_cmpxchg(in,prev,prev+1) == prev ? 1 : 0;                  !
    }                                      !
    out[gid] = my_success;!
  }                                          !
} 
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Atomic operation performance 
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Successful CAS rate 
decreases with number of 

threads! 

Other atomic operations 
scale up with the thread 

count 

For more architectures, see the paper 

CAS: 1,478/ms 
FAA: 859,524/ms 

 FAA is 581 times faster 
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!  Definitions and abstractions 
!  Building blocks: Evaluating atomic operations 
!  Queue types and modeling 
!  Our queue design 
!  Performance evaluation 
!  Conclusions 

Outline 
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!  All concurrent queues require either: 
•  Locks, or 
•  Atomic operations 

!  Model result:  Throughput (T) for a given number of 
threads (t) 

!  Terms, average latency of constituent atomics: 
•  Read: r 
•  Write: w 
•  Successful contended CAS: c 
•  Attempted CAS: C 

General modeling of queues 



Lawrence Livermore National Laboratory LLNL-PRES-666776 
20 

!  Contended CAS  
•  MS queue and TZ queue 

!  Un-contended CAS 
•  LCRQ 

!  Combining 
•  FC queue 

!  FAA or blocking array 
•  CB queue and our queue 

Queue types 

Tt = 2
rt ×2+ ct( )+ (rt +wt + ct)

Tt = 1
at + rt +Ct( )

Tt = 2
r1+w1×2( )+ (r1×2+w1)

Tt = 2
at + rt +wt( )+ (at +wt ×2)
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Modeled queue throughput 
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AMD HD7970 

Combining queue 
performance is independent 

of thread count 

Contended-CAS queue 
performance degrades as 

threads increase 

Un-contended-CAS and 
FAA queues scale with 

additional threads 
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!  Definitions and abstractions 
!  Building blocks: Evaluating atomic operations 
!  Queue types and modeling 
!  Our queue design 
!  Performance evaluation 
!  Conclusions 

Outline 
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Our queue design: 
Goals 
!  Scale well on many-core architectures 

•  Avoid contended CAS! 

 
!  Maintain Linearizability and FIFO ordering 

!  Allow the status of the queue to be inspected 
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!  Blocking interface: The fast, concurrent interface 
•  enqueue(q, data) -> success or closed 
•  dequeue(q, &data) -> success or closed  

!  Non-waiting interface: 
•  enqueue_nw(q, data) -> success, not_ready or closed 
•  dequeue_nw(q, &data) -> success, not_ready or closed 

!  Status inspection interface 
•  distance(q) -> the distance between head and tail, corrected for 

rollover 
•  waiting_enqueuers(q) -> number of enqueuers blocking 
•  waiting_dequeuers(q) -> number of dequeuers blocking 
•  is_full(q) -> true if full, else false 
•  is_empty(q) -> true if empty, else false 

Our queue design: 
Solution, divide the interfaces 
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Our queue’s blocking behavior: 
Enqueue example: Get targets with FAA 

31"

0 3 Tail Head 

Thread 1 Thread 2 Thread 3 
4 0 5 0 6 0 

0 0 0 0 0 0 0 0 0 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Get targets with FAA 

32"

0 3 Tail Head 

Thread 1 Thread 2 Thread 3 
4 0 5 0 6 0 

0 0 0 0 0 0 0 0 0 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Get targets with FAA 

33"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 0 0 0 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Write values 

34"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 0 0 0 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Write values 

35"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 0 0 0 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Write values 

36"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 5 6 4 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Update slots 

37"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 5 6 4 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Update slots 

38"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 5 6 4 1 2 3 

Slot array 0 0 0 0 0 0 0 0 0 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Update slots 

39"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 5 6 4 1 2 3 

Slot array 0 0 0 0 0 0 1 1 1 1 1 1 
Value array 
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Our queue’s blocking behavior: 
Enqueue example: Update slots 

40"

0 6 Tail Head 

Thread 1 Thread 2 Thread 3 
4 3 5 5 6 4 

0 0 0 0 0 0 5 6 4 1 2 3 

Slot array 0 0 0 0 0 0 1 1 1 1 1 1 
Value array 

Safe and parallel! 
For complete 

implementation details, 
see the paper 
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!  Definitions and abstractions 
!  Building blocks: Evaluating atomic operations 
!  Queue types and modeling 
!  Our queue design 
!  Performance evaluation 
!  Conclusions 

Outline 
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Evaluation:  
Queues Under Consideration 
!  Michael & Scott (MS) queue: Contended CAS 

•  Storage: Unbounded linked list 
•  Progress guarantee: lock-free 
•  Coherence mechanism: CAS on head and tail 

!  Tsigas & Zhang (TZ) queue: Contended CAS 
•  Storage: Bounded array 
•  Progress guarantee: lock-free 
•  Coherence mechanism: CAS on head and tail 

!  Flat-combining (FC) queue: Combining 
•  Storage: Unbounded linked list 
•  Progress guarantee: lock-free, *blocking* 
•  Coherence mechanism: Serialization, single worker thread at a time 

!  Linked Concurrent Ring Queue (LCRQ): Un-contended CAS 
•  Storage: Unbounded linked-list of blocking array-based queues 
•  Progress guarantee: lock-free 
•  Coherence mechanism: Double-wide CAS (precludes implementation on 

AMD GPUs) 
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Evaluation: 
Test loops 
!  Matching enqueue/dequeue: 

•  All threads: 
—  Dequeue a value 
—  Work on the value for 100 iterations 
—  Enqueue the new value 
—  Work out-of-band for 100 iterations 

!  Producer/consumer: 
•  25% of all threads: 
—  Enqueue a value 
—  Work for 100 iterations 

•  The remaining 75%: 
—  Dequeue a value 
—  Work for 100 iterations 

!  All tests run for 5 seconds and are self-stopped on the device 
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Evaluation: 
CPU performance: Oversubscribing 
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LCRQ lags behind by only 
17% 

1,408 times speedup from 
MS-queue to the blocking 

queue 
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Evaluation: Acc. performance: 
Current-Gen: Prod./Cons. 
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Flat−Combining queue
LCRQ−32bit

Michael and Scott queue
New − Blocking Enq&Deq

New − Non−waiting Deq, Blocking Enq
New − Non−waiting Enq&Deq

Tsigas and Zhang queue

LCRQ drops to  
2,700 ops/second 

33,043.91 times more ops 
with blocking than LCRQ in 

this case 
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!  Designing concurrent data-structures for 
throughput is important in modern architectures 

!  CAS can be dangerous with enough threads 
!  Our queue shows between a 1.5x and 1000x 

speedup over state of the practice for many-core 
architectures 

!  Allowing blocking can be beneficial! 

Conclusions 


