

A Comprehensive Analytical Performance Model of DRAM Caches

Authors:

Nagendra Gulur*, Mahesh Mehendale*, and R Govindarajan+

*Texas Instruments,

*Indian Institute of Science

Suniversity of Texas, Austin

6th ACM/SPEC International Conference on Performance Engineering, 2015

Talk Outline

- Introduction to stacked DRAM Caches
- Background (An overview of ANATOMY§)
- ANATOMY-Cache: Modeling Stacked DRAM Cache Organizations
- Evaluation
- Insights
- Conclusions

§ANATOMY: An Analytical Model of Memory System Performance (Published in the 2014 ACM international conference on Measurement and modeling of computer systems)

Stacked DRAM

- DRAM vertically stacked over the processor die.
- Stacked DRAMs offer
 - High bandwidth
 - High capacity
 - Moderately low latency.
- Several proposals to organize this large DRAM as a last-level cache.

VERTICAL STACKING (3D)

Processor Orgn. With DRAM Cache

Talk Outline

- Introduction to stacked DRAM Caches
- Background (An overview of ANATOMY)
- ANATOMY-Cache: Modeling Stacked DRAM Cache Organizations
- Evaluation
- Insights
- Conclusions

Overview of a DRAM based memory

Basic DRAM Operations

- ACTIVATE
 Bring data from DRAM core into the row-buffer
- READ/WRITE
 Perform read/write operations on the contents in the row-buffer
- PRECHARGE → Store data back to DRAM core (ACTIVATE discharges capacitors), put cells back at neutral voltage

Memory Requests

- Parallelism improves performance
- Some switching delays hurt performance

ANATOMY - Analytical Model of Memory

Two components

- 1) Queuing Model of Memory
 - Organizational and Technological characteristics
 - Workload characteristics used as input
- 2) Use of Workload Characteristics
 - Locality and Parallelism in workload's memory accesses

Analytical Model for Memory System Performance

Validation - Model Accuracy

- Low Errors in RBH, BLP and Latency Estimation
 - Average error of 3.9%, 4.2% and 4%
- ANATOMY predicts trends accurately

Talk Outline

- Introduction to stacked DRAM Caches
- Background (An overview of ANATOMY)
- ANATOMY-Cache: Modeling Stacked DRAM Cache Organizations
- Evaluation
- Insights
- Conclusions

Key Parameters that govern performance:

Arrival Rate

- Arrival Rate
- Tag access time

- Arrival Rate
- Tag access time
- Cache hit rate

- Arrival Rate
- Tag access time
- Cache hit rate
- Cache RBH

- Arrival Rate
- Tag access time
- Cache hit rate
- Cache RBH
- Cache Miss Penalty

Two ANATOMY
 instances - one for
 DRAM cache and one for
 main memory.

INDIAN INSTITUTE OF SCIENCE

- Two ANATOMY
 instances one for
 DRAM cache and one for
 main memory.
- The models are fed by the output of the tag server and each other's outputs.

INDIAN INSTITUTE OF SCIENCE

- Two ANATOMY
 instances one for
 DRAM cache and one for
 main memory.
- The models are fed by the output of the tag server and each other's outputs.
 - Predicted Cache Hits
 - No Predictions

INDIAN INSTITUTE OF SCIENCE

- Two ANATOMY
 instances one for
 DRAM cache and one for
 main memory.
- The models are fed by the output of the tag server and each other's outputs.
 - Predicted Cache Hits
 - No Predictions
 - Line fills and write back requests from main memory

- Two ANATOMY
 instances one for
 DRAM cache and one for
 main memory.
- The models are fed by the output of the tag server and each other's outputs.
 - Predicted Cache Hits
 - No Predictions
 - Line fills and write back requests from main memory
 - Predicted Misses

- Two ANATOMY
 instances one for
 DRAM cache and one for
 main memory.
- The models are fed by the output of the tag server and each other's outputs.
 - Predicted Cache Hits
 - No Predictions
 - Line fills and write back requests from main memory
 - Predicted Misses
 - Requests from Cache

- Two ANATOMY
 instances one for
 DRAM cache and one for
 main memory.
- The models are fed by the output of the tag server and each other's outputs.
- We compute the latencies at the cache and memory using ANATOMY.

Obtaining the average LLSC miss penalty

 L_{cache} and L_{mem} are combined by to estimate the average LLSC miss penalty.

• But first we discuss the estimation of the key parameters that govern L_{Cache} and L_{Mem} .

Estimating Key Parameters ...

- Arrival Rate
- Tag access time
- Cache hit rate
- Cache RBH
- Cache Miss Penalty

 Arrival Rate at the Cache is a sum of several streams of accesses.

- Arrival Rate at the Cache is a sum of several streams of accesses.
- Predicted Hits

- Arrival Rate at the Cache is a sum of several streams of accesses.
- Predicted Hits
- No predictions

- Arrival Rate at the Cache is a sum of several streams of accesses.
- Predicted Hits
- No predictions
- Line fills and writebacks

Summarizing the Cache Arrival Rate

Request Stream	Rate	Notes
Predicted Hits	$\lambda^* h_{pred}^* h_{cache}$	
No predictions	$\lambda^*(1-h_{pred})$	They are sent to the cache for tag look-up
Line Fills	$\lambda*(1-h_{cache})*B_s$	B _s is the cache block size
Writebacks	$\lambda^*(1-h_{cache})^*w$	w is the fraction of misses that cause write-backs

$$\lambda_{cache} = \lambda^* h_{pred}^* h_{cache} + \lambda^* (1 - h_{pred}) + \lambda^* (1 - h_{cache})^* B_s + \lambda^* (1 - h_{cache})^* w$$

Estimating Tag Predictor Hit Rate and Access Time

Tags-on-SRAM

- All tags on SRAM.
- Hit Rate = 100%

<u>Tags-on-DRAM</u>

- A small setassociative cache.
- Hit Rate determined by running an access trace through the cache model.

Predictor access time depends on its size.
An estimate is obtained using CACTII.

Estimating Cache Hit Rate

- Cache Hit Rate depends on 3 key parameters:
 - Cache Size
 - Set Associativity
 - Block Size
- Well-studied problem
 - A trace-based model and reuse distance analysis.
- We use a trace of accesses from the LLSC.

Estimating Cache Hit Rate with Block Size

- Larger block sizes can capture spatial locality.
- Bandwidth-neutral model: Cache miss rate halves with doubling of cache block size.

- » If this holds, then measuring hit rate at smallest block size via trace based analysis is sufficient.
- » For larger block sizes, estimate via:

$$h_{b_s} = 1 - \frac{(1 - h_1)}{B_s}$$

Not all workloads are bandwidth-neutral

- For such workloads, bandwidth-neutral model leads to lower miss rate prediction.
- Use trace-based cache simulations in such cases.

Workload Q22 is NOT bandwidth-neutral

Estimating DRAM Cache Row-Buffer Hit Rate

- Row-Buffer Hit rate (RBH) of the DRAM cache depends on the access pattern and the data organization on the DRAM.
- We estimate RBH using the Reuse-Distance framework similar to ANATOMY.

Details are in the paper.

Putting them together ...

 LLSC Miss Penalty from: L_{cache} and L_{mem}

Event	Latency
Predicted Cache Hit	A: h _{pred} *h _{cache} *L _{cache}
Predicted Cache Miss	B: h _{pred} *(1-h _{cache})*L _{mem}
No Prediction and Cache Hit	C: (1-h _{pred})*h _{cache} *L _{cache}
No Prediction and Cache Miss	D: (1-h _{pred})*(1-h _{cache}) *[L _{cache} +L _{mem}]
L _{Avg}	A+B+C+D 37

Talk Outline

- Introduction to stacked DRAM Caches
- Background (An overview of ANATOMY)
- ANATOMY-Cache: Modeling Stacked DRAM Cache Organizations
- Evaluation
- Insights
- Conclusions

Experimental Evaluation

- Validation using GEM5 Simulation (with detailed Memory model)
- Use of Multiprogrammed workloads
- Workloads comprising of SPEC2000/SPEC2006 benchmarks
- Architecture Configurations
 - 4 core and 8 core
 - 128MB (4 core) and 256MB (8 core) DRAM caches
 - Cache Memory: 1.6GHz DRAM, 2KB page, 128-bit bus
 - DRAM Main Memory: 3.2GHz DRAM, 64-bit bus
 - Tags-on-DRAM:
 - Direct Mapped 64B block size
 - Tags and Data on the same DRAM rows
 - Tag Predictor: 2-way set associative tag cache
 - Tags-on-SRAM:
 - Block Size: 1024B
 - 2 way set associative

Validation of the Tags-on-DRAM Model

Low errors in estimation of Avg. LLSC Miss Penalty (10.9% in 4-core and 9.3% in 8-core workloads)

Validation of the Tags-on-SRAM Model

Low errors in estimation of Avg. LLSC Miss Penalty (10.5% in 4-core and 8.2% in 8-core workloads)

Talk Outline

- Introduction to stacked DRAM Caches
- Background (An overview of ANATOMY)
- ANATOMY-Cache: Modeling Stacked DRAM Cache Organizations
- Evaluation
- Insights
- Conclusions

Insight 1: It is hard to out-perform Tags-on-SRAM designs

Tag Access Time:

$$t_{tag}^{tags-in-dram} = h_{pred} * t_{pred} + (1-h_{pred}) * t_{dram_cache}$$

Requires High Predictor Hit Rate to beat Tags-on-SRAM Latency for Tag

Lookup

Insight 2 - Motivation

- The DRAM Cache gets a very high cache hit rate.
- The Main Memory remains mostly idle!
- Cache is congested and memory is free!
- So we consider if bypassing some cache hits to main memory would get an overall latency benefit ...
- We extend ANATOMY-Cache model by accounting for a fraction of requests that bypass the cache (details in the paper).

Insight 2: Cache Bypass/Offload Helps!

Congested Workload: Misses Are Expensive!

Talk Outline

- Introduction to stacked DRAM Caches
- Background (An overview of ANATOMY)
- ANATOMY-Cache: Modeling Stacked DRAM Cache Organizations
- Evaluation
- Insights
- Conclusions

ANATOMY-Cache

- First Analytical Model of Stacked DRAM Caches
- Covers Both Tags-on-DRAM and Tags-on-SRAM organizations
- We investigated two insights with the help of the model

Thank You!!