
Subsuming Methods:
Finding New Optimisation

Opportunities in OO
Software

David Maplesden Ewan Tempero
John Hosking John Grundy

The University of Auckland
ICPE 2015

1

Performance is Important

• Cloud computing costs

• Resource constrained environments

• Mobile applications

• Lost business - Amazon 100ms delay = 1% sales

• Failed projects

Where is Auckland?

Focus
• Large-scale object-oriented software

• Ubiquitous in industry

• Late-cycle empirical performance analysis

• a.k.a. profiling and tuning

• Complementary to model-based predictive
methods

• Analysis - the neglected backward path

4

5

A ‘modern’ profiler

Challenges of OO software
• Numerous small methods

• Heavily layered architecture

• Engineered for maintainability and reuse

• Reusable frameworks, more abstractions

• Runtime bloat

• Complex, thinly distributed, runtime behaviour

• Challenging to identify optimisation opportunities

6

Hot methods - DaCapo fop
benchmark

Method Occurrences in
CCT % Exclusive Time

sun.misc.FloatingDecimal.dtoa 348 6.876
java.text.DigitList.set 374 5.245

java.text.DecimalFormat.subformat 374 3.110
org.apache.fop.fo.properties.PropertyMaker.findProperty 1501 2.461

java.lang.String.equals 4666 1.853
sun.nio.cs.US_ASCII$Encoder.encode 568 1.788

sun.misc.FloatingDecimal.countBits 348 1.556
java.util.HashMap.hash 10663 1.506

java.util.HashMap.getEntry 6081 1.342
java.lang.String.indexOf 3343 1.295

7

Background - Calling
Context Trees

8

Calling Context Ring Chart

Key Idea
• CCTs aren’t just random data

• There are patterns within the calling context tree

• induced by the design of the software

• compact

• repeated in multiple locations

• expensive when aggregated

10

Subsuming Methods

11

Consolidated Tree

12

Subsuming Methods
• Partition the CCT into areas of related

functionality

• Induced time is very efficient to calculate

• Each subsuming method represents a
repeated pattern

• How do we choose our subsuming
methods?

13

Subsuming Attributes
• ‘Elementary’ methods - induce a limited range of behaviour

• Approximated using height of method in CCT

• Trivial case (height = 0) - makes no method calls - a leaf method

• getters, setters, hashCode(), equals()

• ~30% of all methods are leafs ~70% have height <= 4

• ‘Subordinate’ methods - called in a predictable manner

• Every call to the method can be attributed to a (nearby) dominating method
which is responsible for the invocation

• Measured using novel metric - dominating method distance

• Trivial case is when a method is only ever called from a single call site

• ~70% of all methods have a single parent ~77% have DMD <= 4

14

Height and
Dominating Method Distance

Height = 0
DMD = 2

15

Experimental Evaluation
• DaCapo-9.12-bach (2009) benchmark suite

• 14 different Java benchmark applications

• JP2 profiler to capture CCT profiles

• Very consistent, reproducible results

• Apply our subsuming methods analysis

• 5 runs for each benchmark

• Constraints: height > 4 and DMD > 4

16

Results Summary
• Across the 14 benchmarks:

• 6.12% of all methods were subsuming

• 11.82% of nodes in the CCT were subsuming

• => subsuming methods aggregation greatly simplifies
profile information

• 15 of the top 20 subsuming methods were not in the top
20 inclusive or exclusive cost methods

• => new optimisation opportunities are identified

• https://www.cs.auckland.ac.nz/~dmap001/subsuming/

https://www.cs.auckland.ac.nz/~dmap001/subsuming/

Results - Analysis Efficiency

Results - DaCapo fop
benchmark

Full CCT Subsuming
CCT Ratio

Nodes 628751 71430 11.36%

Height 111 25 22.52%

Unique Methods 6709 345 5.14%

19

Top Subsuming Methods -
DaCapo fop benchmark

Method Occurrences
in CCT

% Exclusive
Time

% Induced
Time

java.text.DecimalFormat.format 374 0.169 13.644

org.apache.fop.fo.StaticPropertyList.get 1691 1.228 8.884

sun.misc.FloatingDecimal.dtoa 348 6.876 8.871

org.apache.fop.layoutmgr.BlockStackingLayoutManager.getNext
KnuthElements 12 0.068 6.381

org.apache.fop.render.AbstractRenderer.renderInlineArea 42 0.041 4.449

org.apache.fop.layoutmgr.BreakingAlgorithm.findBreakingPoints 16 0.002 4.340

20

Calling Context Ring Chart

Subsuming - DaCapo fop

Subsuming - DaCapo fop

DaCapo fop - Improvements
• Top subsuming method - java.text.DecimalFormat.format

• Highly complex general purpose number formatter

• Called 98% of the time from one location to produce a
very specific (and simple) 2 decimal place format

• org.apache.xmlgraphics.ps.PSGenerator.formatDouble

• Accounts for 26% of the total benchmark cost

• Replace with a more specialised implementation

• 22% reduction in benchmark cost

Summary
• Subsuming Methods

• Empirical performance analysis approach

• Helps identify repeated patterns within a CCT profile

• Efficient offline analysis

• Complementary to existing approaches

• Applicable to a wide range of data

• Preliminary evaluation with DaCapo benchmark

Industry Case Study
• letterboxd.com

• 125,700 registered members

• 3.6 million requests per day

• 54.8% reduction in CPU load

• 49.6% reduction in response time

• Paper accepted at ICSE 2015 - SEIP track

• “Performance Analysis using Subsuming Methods:
An Industrial Case Study” - Maplesden et al

http://letterboxd.com

User Study
• Test the effectiveness of subsuming methods

analysis in aiding software engineers

• Implemented as an on-line test and
questionnaire

• Mid 2015

• If interested please volunteer!

• Contact: david@maplesden.co.nz

mailto:david@maplesden.co.nz

Thank you!

Questions?

Related Work
• Very broad domain (100 venues in our SLR)

• Relevant work from HPC, Compiler,
Programming Language domains

• Majority of approaches provide simple metrics

• Lack of actionable feedback

• Very few approaches leverage static analysis

• Runtime bloat research focussed on data-flow

29

Systematic Mapping

• “Performance Analysis for Object-Oriented
Software: A Systematic Mapping”

• Empirical methods focus

• Accepted for publication in TSE

• http://dx.doi.org/10.1109/TSE.2015.2396514

http://dx.doi.org/10.1109/TSE.2015.2396514

Runtime Bloat Research
• Tackle problem of excessive activity to achieve

seeming simple functionality

• Data-flow centric approaches

• Efficiency of data structures

• Object pooling opportunities

• Copy profiling

• Reference propagation profiling

31

Existing Approaches
• Lin et al (2010). Towards Anomaly

Comprehension: Using Structural Compression
to Navigate Profiling Call-Trees.

• Aggregation by package and class name

• Srinivas & Srinivasan (2005). Summarizing
application performance from a components
perspective.

• Thresholding and filtering

32

