Green Domino Incentives: Impact of Energy-aware Adaptive Link Rate Policies in Routers

Cyriac James
University of Calgary
Canada

Niklas Carlsson
Linköping University
Sweden

Presented by Martin Arlitt, HP Labs
Motivation

- Energy savings in Internet routers
 - Over-provisioned to meet peak traffic
 - Hence, often under utilized

- Effect on downstream routers
 - Positive or negative
 - Energy and Delay
Contribution

- Evaluation Framework
 - Router Model
 - Policy Model
 - Energy Model
 - Traffic Model

- Trace based simulation
 - Capture real traffic characteristics

- Analysis on immediate downstream router
 - Delay
 - Improvement in energy savings
Adaptive Link Rate (ALR)

- Energy saving techniques
 - Rate scaling
 - Active/idle toggling
 - IEEE 802.3az
 - Commercial
 - Cisco Catalyst 4500E Switch

48-port Line Card (Photo Courtesy: Cisco)

Symbolic representation of port operation
Policy Parameters & Delay

Rate Scaling

- Rate scaling
 - Service rate or port speed
 - Reduction in speed → Energy Savings

Active/Idle Toggling

- Active/Idle Toggling
 - Queue threshold
 - Amount of idle time → Energy Savings
Policy Model

- Tail delay (99th percentile)
 - Between .01ms and 100ms

- Vary policy parameters
 - Port rate
 - Queue threshold

- Hybrid
 - Port rate
 - Queue threshold < Smallest packet
Router Model

- Delay
 - Switch Fabric
 - Queue
 - Transmit

- Model by Hohn et al. 2009
 - Switch fabric delay: 10 – 50 microseconds
 - Delay constraints in milliseconds
 - Delay = Queue delay + Transmit delay
 - Infinite queue
 - Tail delay
Energy Model

- Proportional Model
- Interested in Relative energy consumption
- NOT absolute
- Relative increase/decrease in energy savings
- At R2, R3 and R4
 - R1 runs green techniques
 - R1 does not
Traffic Model

- Traffic scenarios
 - Dispersion: 1*2
 - Aggregation: 2*1
 - Multiplexing: 1*1, 2*2 (shown), 3*3
- Packet traces (public)
 - Waikato trace (edge)
 - MAWI (core)
Simple Back-to-Back Case

- Past studies on tandem queues
 - Increased delay at R2 for (utilization < 60%)
 - Continuous and independent service time
- Our results:
Bimodal Distribution

- Most packet sizes are either small (<100 bytes) or large (>1400 bytes)
- Incoming edge traffic has more large packets
Back-to-Back Probability

Small: <= 100 bytes
Large: >= 1400 bytes
Medium: > 100 and < 1400

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.39</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>Medium</td>
<td>0.10</td>
<td>0.06</td>
<td>0.03</td>
</tr>
<tr>
<td>Large</td>
<td>0.05</td>
<td>0.02</td>
<td>0.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Small</th>
<th>Medium</th>
<th>Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>0.23</td>
<td>0.05</td>
<td>0.07</td>
</tr>
<tr>
<td>Medium</td>
<td>0.04</td>
<td>0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Large</td>
<td>0.08</td>
<td>0.03</td>
<td>0.45</td>
</tr>
</tbody>
</table>
Example Scenario

- Small packet has negligible processing delay
- Small packet experience larger delay at R2 than R1
Proportional Energy Savings

- Reduced delay at R2 ➡️ More energy savings at R2
- Increase in multiplexing impact energy savings
- Relative savings at R2?
Cascading (Domino) Effect

- Improvement in energy savings
- Rate Scaling: Up to 35%
- Active/Idle Toggling: Up to 15%

Rate Scaling: Core

Active/Idle: Edge
Hybrid Case

- Improvement of up to 10% observed for hybrid
- Multiplexing reduces improvement in all three classes of algorithms
Conclusion

- Performance evaluation framework
- Trace based analysis
- Effect of ALR policies on neighboring routers
 - Cascading (domino) energy improvement
 - Up to 30% energy savings (rate scaling)
 - Influenced by traffic characteristics
- Future Work:
 - Variability
 - Large scale deployment study
 - Interactions with higher layer protocols & applications
Thank You

Green Domino Incentives: Impact of Energy-aware Adaptive Link Rate Policies in Routers

Cyriac James
University of Calgary
Canada
cyriac.james@ucalgary.ca

Niklas Carlsson
Linköping University
Sweden
nikca@ida.liu.se