Analysis of the Influences on Server Power Consumption and Energy Efficiency for CPU-Intensive Workloads

Jóakim v. Kistowski, Hansfried Block, John Beckett, Klaus-Dieter Lange, Jeremy A. Arnold, Samuel Kounev

University of Würzburg, Fujitsu, Dell, HP, IBM
SPECpower Committee, SPEC

ICPE, February 3rd 2015, Austin, TX
A typical server …

- has an average utilization between 10% and 50%,
- is provisioned with additional capacity (to deal with load spikes).

Power consumption depends on server utilization.
- Relationship of Performance and Power

- For transactional workloads:

\[
\frac{\text{transactions}}{\text{energy}} \left[\frac{1}{J} \right] = \frac{\text{throughput}}{\text{power}} \left[\frac{1}{s/W} \right]
\]

- Comparison of efficiency of different workload types is difficult
 - Different scales of transaction-counts / throughput
 - \(\Rightarrow \) normalization
Black-box models
- Simple
- Fine granular models are workload-dependent [2]

Decomposition into used hardware components [3,4]

What about different workloads targeting the same component?
Contributions

- Measure power consumption and performance for SERT’s 7 CPU worklets
- Explore change of power consumption and energy efficiency depending on load level
- Demonstrate that CPU-workloads can have significantly different power consumption at the same load level
- Explore impact of different hardware and software configurations on the power/load level functions
- Server Efficiency Rating Tool
- Tool for analysis and evaluation of energy efficiency of servers
- Provides focused transactional micro-workloads (called worklets)
 - Exercise selected SUT aspects at multiple load levels
- Tests SUT at multiple load levels
- Calibrates workload intensity for target SUT load levels
- Controller System runs
 - Chauffeur: Director
 - Reporter

- PTDaemon
 - Network-capable power and temperature measurement interface
 - Can run on controller system or separate machine

- System under Test (SUT) runs
 - SERT client, executes worklets
Utilization = \frac{t_{busy}}{t_{busy} + t_{idle}}

DVFS increases CPU busy time at low load
- increases utilization
- Power over load measurements need to compensate

How to compare?

SERT’s solution: Machine utilization
- 100% utilization at maximum throughput
- Load level = \frac{current \, throughput}{max. \, throughput}
- Separate measurement intervals at stable states
 - 15 second pre-measurement run
 - 15 second post-measurement run
 - 120 second measurement

- Temperature analyzer for comparable ambient temperature

- Power Measurements: AC Wall Power
7 CPU worklets:

<table>
<thead>
<tr>
<th>Worklet</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compress</td>
<td>Compresses and decompresses data</td>
</tr>
<tr>
<td>CryptoAES</td>
<td>Encryption and decryption</td>
</tr>
<tr>
<td>LU</td>
<td>Matrix factorization</td>
</tr>
<tr>
<td>SHA 256</td>
<td>Standard Java SHA-256 hashing and encryption/decryption</td>
</tr>
<tr>
<td>SOR</td>
<td>Jacobi Successive Over-Relaxation</td>
</tr>
<tr>
<td>SORT</td>
<td>Sorts a randomized 64-bit integer array</td>
</tr>
<tr>
<td>XMLValidate</td>
<td>Uses javax.xml.validation</td>
</tr>
</tbody>
</table>

Definition CPU Worklet: 100% load level at 100% CPU utilization. CPU is the bottleneck.
Baseline System:
- Tested for varying: CPUs, OS, JVM, ...

Other base systems:
- Fujitsu PRIMERGY RX600S6 (4 Socket, Westmere)
- Fujitsu PRIMERGY RX200S8 (2 Socket, Ivy Bridge)
- Dell PowerEdge R720 (2 Socket, Sandy and Ivy Bridge)
- HP ProLiant DL385p Gen8 (2 Socket, AMD Piledriver)
- **Biggest Consumer:** XMLValidate
 - 126 W @ 10%
 - 431.4 W @ 100%
- **Smallest Consumer:** SOR
 - 118.3 W @ 10%
 - 343.3 W @ 100%

RHEL6.4_E5-2690_8x8GB Power

![Graph showing power consumption vs load level for different workloads.](image)
Throughput is always linear
Different throughput scales ➔ normalization
Maximum efficiency @ 70% or 80%

RHEL6.4_E5-2690_8x8GB Throughput/Power

RHEL6.4_E5-2690_8x8GB Performance
- Are observations based on 10% measurement intervals accurate?
 - Measurements at 2% measurement intervals
Introduction

SERT

Measurements

Conclusions
- # memory channels has a big impact.

- Big power consumption difference between min and max load is not always a sign of high energy efficiency!
- Xeon E5-2643 system is missing the power consumption increase between 80% - 90%
- Operating system has significant impact on power consumption per load level
 - More complex than simple constant power overhead
- JVM power impact through secondary attributes (such as instruction set support)
Worklet power consumption tops out earlier on Ivy Bridge

<table>
<thead>
<tr>
<th></th>
<th>Xeon E5-2690</th>
<th>Xeon E5-2657v2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Frequency</td>
<td>2.9 GHz</td>
<td>3.3 GHz</td>
</tr>
<tr>
<td>Turbo Frequency</td>
<td>3.8 GHz</td>
<td>4.0 GHz</td>
</tr>
<tr>
<td>TDP</td>
<td>135 W</td>
<td>130 W</td>
</tr>
<tr>
<td>Lithography</td>
<td>32 nm</td>
<td>22 nm</td>
</tr>
</tbody>
</table>
Both systems run Windows Server

<table>
<thead>
<tr>
<th></th>
<th>Opteron 6320</th>
</tr>
</thead>
<tbody>
<tr>
<td># Modules</td>
<td>4</td>
</tr>
<tr>
<td># Cores</td>
<td>8</td>
</tr>
<tr>
<td>Base Frequency</td>
<td>2.8 GHz</td>
</tr>
<tr>
<td>Turbo Frequency</td>
<td>3.3 GHz</td>
</tr>
<tr>
<td>TDP</td>
<td>115 W</td>
</tr>
<tr>
<td>Lithography</td>
<td>32 nm</td>
</tr>
</tbody>
</table>
Power consumption and energy efficiency of SERT’s CPU worklets on different systems

- Varying operating systems, hardware components, architectures...

Some lessons learned:

- Power consumption varies for different CPU worklets and is affected differently by hardware/software changes
- Operating System has significant impact on power consumption per load level
- Load level for maximum energy efficiency depends on hardware and software configuration (usually between 70% - 100%)
- Java Virtual Machine affects power consumption via secondary attributes
Power management must account for varying load levels for optimal energy efficiency.

Power models must account for:
- different workload types utilizing the same resource
- Operating System effects

Need to explore drops in power consumption over rising utilization.
Thanks for listening!

joakim.kistowski@uni-wuerzburg.de
http://se.informatik.uni-wuerzburg.de

Trademark and Disclaimers

The SPEC logo, SPEC, and the benchmark and tool names, SPECpower_ssj, SERT, PTDaemon are registered trademarks of the Standard Performance Evaluation Corporation. Reprint with permission, see spec.org.

The opinions expressed in this tutorial are those of the author and do not represent official views of either the Standard Performance Evaluation Corporation, Transaction Processing Performance Council or author’s company affiliation.