

Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Axel Busch, Qais Noorshams, Samuel Kounev, Anne Koziolek, Ralf Reussner, Erich Amrehn

February 4th, 2015 *ICPE 2015*, Austin, TX

busch@kit.edu

ARCHITECTURE-DRIVEN REQUIREMENTS ENGINEERING GROUP INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Motivation

Many measurements to perform
 Invasive instrumentation needed
 Time consuming model development

Motivation

Approach

Case Study

Motivation

- Fully automated workload characterization
- Lightweight approach
 - Non-invasive instrumentation
 - No need to install the full software stack
 - No need to develop any complex models by hand
- Applicable in virtualized environments
- Fast estimation of performance behaviour in typical scenarios

Motivation

Case Study

Methodology

1. Workload Characterization

Methodology

2. Workload Emulation

Motivation

Metrics set

(simplified)

(Experimental Evaluation of the Performance-Influencing Factors of Virtualized Storage Systems. Q. Noorshams, S. Kounev, and R. Reussner. In EPEW '12, volume 7587 of LNCS. Springer, 2012.)

Motivation

Case Study

File size & File set size

Size

 $\phi^{\iota}(t)$: size of the ι -th file at time tn(t): number of files at time t[0,T], T > 0: observation period

Motivation

Workload Intensity

$$workloadIntensity^{avg} = \int_0^T \frac{\chi(t)}{T} dt, \ \chi(t): \text{workload intensity at time } t$$

[0,T], $T > 0: \text{observation period}$

Case Study

Motivation

Approach

 Motivation
 Approach
 Case Study

 11
 15-02-04
 Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Access Pattern

- 1. Searching for consecutive block access
- 2. Counts the number of consecutive blocks
- 3. Results in number of consecutive block accesses in percent

Algorithm 1 Access Pattern Recognition Algorithm

 $\begin{array}{l} \textbf{while } i < req \ \textbf{do} & // \ \text{Iterate through requests} \\ \textbf{for } j \ \text{such that } i < j < req \ \textbf{do} \\ block_end = R_{i2} & // \ \text{End block of request } R_i \\ block_start = R_{j1} & // \ \text{Start block of request } R_j \\ \textbf{if } block_end = block_start \ \textbf{then} \\ \hline req_seq \leftarrow req_seq + 2 & // \ \text{Count both } R_i, R_j \\ R \leftarrow R \setminus \{R_i, R_j\} \\ \text{continue while;} \\ \hline \textbf{end for} \\ i \leftarrow i + 1 \\ \textbf{end while} \\ \hline \textbf{return } \frac{req_seq}{req} \\ \hline \end{array}$

System Setup

- Workload characterization performed on an IBM System z and DS8700 storage system
- Both systems represent high-end virtualized environments for critical business applications

Motivation

System Setup

System z configuration:

- Debian z/Linux VM (=LPAR)
- 2 IFLs (cores) ~2760 MIPS
- 4 GB RAM

- DS8700 configuration:
 - 50 GB volatile cache (VC)
 - 2 GB non-volatile cache (NVC), i.e., battery-backed cache
 - RAID5 array with 7 HDDs (15k r/min) with 1 hot spare disk

Motivation

Approach

Case Study

Tools

- Filebench as storage system benchmark
- Used for generating workloads to be characterized

https://github.com/Filebench-Revise

Used for emulating workloads

https://github.com/FFSB-Prime/ffsb

Storage Performance Analyzer as measurement coordinator

http://research.spec.org/tools/overview/spa.html

Motivation

Approach

Case Study

Conclusion

16 15-02-04 Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Systematic experiments

SPA extension allowing automatized

- Workload execution
- Monitoring mechanisms
- Workload characteristics extraction

Workload characterization results [avg]:

Workload results		
	File server	Mail server
File size	17 KiB	130 KiB
File set size	684 MiB	1163 MiB
Workload intensity	16	50
Request mix	56 %	42 %
Request size (r)	14 KiB	103 KiB
Request size (w)	15 KiB	79 KiB
Access pattern (r)	29 %	97 %
Access pattern (w)	57 %	99 %

- Measurements performed using 1 min warm up + 20x 5 min benchmark time
 - Low standard deviations

Motivation

Case Study

synchronized

Evaluation Scenarios

Workload characterization approach evaluated by two case studies

I) Workload Characterization

How accurate is the estimation of the workload characterization approach?

- II) Scenarios
 - a) Migration scenario How accurate is the estimation in migration scenarios?
 - b) Consolidation scenario How accurate is the estimation in consolidation scenarios?

Motivation

Evaluation: Estimation Accuracy

How accurate is the estimation of the workload characterization approach?

Original Emulation

	Read error	Write error
Mail server	20.82 %	35.72 %
File server	3.93 %	36.96 %

Motivation

Approach

Case Study

Conclusion

15-02-04 Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments 19

Evaluation: Migration Scenario

How accurate is the estimation in migration scenarios?

20 15-02-04 Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Evaluation: Consolidation Scenario

How accurate is the estimation in consolidation scenarios?

Evaluation: Summary

- Estimation Accuracy
- Migration Scenario
- ☑ Migration + Consolidation Scenario

Accurate results for a fast initial performance estimation in typical scenarios

Conclusion

Summary

- Fully automated approach to derive a workload characteristics model
- Capturing I/O performance-relevant workload parameters using a formalized metrics set
- Approach applied in real-world scenarios using state-of-the art virtualization hardware

Evaluation results

- · Promising accuracy for fast initial performance estimation
- Migration and consolidation scenarios show low error rates < 25 %

Future Work

- Using workload characterization approach as a basis for other performance models.
- Applying scenarios when interpolate and extrapolate workload parameters

Motivation

Approach

Case Study