
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

ARCHITECTURE-DRIVEN REQUIREMENTS ENGINEERING GROUP
INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS

www.kit.edu

Automated Workload Characterization for I/O
Performance Analysis in Virtualized Environments
Axel Busch, Qais Noorshams, Samuel Kounev,
Anne Koziolek, Ralf Reussner, Erich Amrehn

busch@kit.edu

February 4th, 2015
ICPE 2015, Austin, TX

CHAIR FOR SOFTWARE DESIGN AND QUALITY

��������

Modeling and Experimental Analysis of Virtualized Storage Performance
using IBM System z as Example
Diploma Thesis Presentation October 12, 2012
Dominik Bruhn
Reviewers: Prof. Dr. Ralf H. Reussner, Prof. Dr. Walter F. Tichy
Advisors: Qais Noorshams, Dr. Samuel Kounev

KIT – Universität des Landes Baden-Württemberg und

nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

2 15-02-04

Motivation

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

App

Simultaneous Requests

0

20

40

60
80

100

Request Size (KB)
0

20

40

60

R
esponse Tim

e (m
s) 5

10

15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

  Many measurements to perform
  Invasive instrumentation needed
  Time consuming model development

Kunden Speicher-System

3 15-02-04

Motivation

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

App

1.

  Fully automated workload characterization
  Lightweight approach

  Non-invasive instrumentation
  No need to install the full software stack
  No need to develop any complex models by hand

  Applicable in virtualized environments
  Fast estimation of performance behaviour in typical scenarios

Motivation Approach Conclusion Case Study

2. 3.

4 15-02-04

Methodology

Workload Characterization

Metrics Set
Workload
Monitoring

& Extraction

I/O-intensive
workload
e.g., file server,

mail server

Workload
Characteristics

Model

Model Process Input Output

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

1. Workload Characterization

Motivation Approach Conclusion Case Study

5 15-02-04

Methodology

Workload Emulation

Workload Generator

Monitoring
Parameters

e.g., Response Time

Results of
emulated
Workload

Workload
Characteristics

Model

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

2. Workload Emulation

Motivation Approach Conclusion Case Study

6 15-02-04

Metrics set

Workload Mix

Request MixFiles Workload
Intensity

Average
Request Size

Request
Access Pattern

File Set
Size File Sizes Read

Proportion
Write

Proportion Sequential Random

optional

mandatory

alternative

(Experimental Evaluation of the Performance-Influencing Factors of Virtualized Storage Systems.
Q. Noorshams, S. Kounev, and R. Reussner. In EPEW ’12, volume 7587 of LNCS. Springer, 2012.)

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

(simplified)

Motivation Approach Conclusion Case Study

7 15-02-04

File size & File set size

File 1 File n
...

File 2

File size File size File size

File set size

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

:!

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

:!

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T · n(t) dt (1)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T · n(xk)
·∆tk (2)

≈ 1
!

!∑

t=1

∑n(t)
ι=1 φι(t)

n(t)
, (3)

where φι(t) is the size of the ι-th file at time t and n(t)
is the number of files at time t, ! is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([tk−1, tk], xk), 1 ≤ k ≤ τ} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . . ≤ xτ ≤ tτ = T ,
∆tk := tk − tk−1, and |∆| := maxk(∆tk), k ∈ {1, . . . , τ}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T
dt (4)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T
·∆tk (5)

≈ 1
!

!∑

t=1

n(t)∑

ι=1

φι(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Workload Mix

Request MixFiles Workload
Intensity

Average
Request Size

Request Access
Pattern

File Set
Size File Sizes Read

Proportion
Write

Proportion Sequential Random

optional

mandatory

alternative

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

∫ T

0

χ(t)
T

dt (7)

= lim
|∆|→0

τ∑

k=1

χ(xk)
T

·∆tk (8)

≈ 1
!

!∑

t=1

χ(t), (9)

where χ(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let Γ0 and
Γ1 be the sets of all observed read and write request sizes:

requestMix =
|Γ0|

|Γ0|+ |Γ1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

∑|Γ0|−1
j=0 Γ0,j

|Γ0|
(11)

requestSizewrite =

∑|Γ1|−1
j=0 Γ1,j

|Γ1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are offset in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially different threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T · n(t) dt (1)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T · n(xk)
·∆tk (2)

≈ 1
!

!∑

t=1

∑n(t)
ι=1 φι(t)

n(t)
, (3)

where φι(t) is the size of the ι-th file at time t and n(t)
is the number of files at time t, ! is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([tk−1, tk], xk), 1 ≤ k ≤ τ} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . . ≤ xτ ≤ tτ = T ,
∆tk := tk − tk−1, and |∆| := maxk(∆tk), k ∈ {1, . . . , τ}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T
dt (4)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T
·∆tk (5)

≈ 1
!

!∑

t=1

n(t)∑

ι=1

φι(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Workload Mix

Request MixFiles Workload
Intensity

Average
Request Size

Request Access
Pattern

File Set
Size File Sizes Read

Proportion
Write

Proportion Sequential Random

optional

mandatory

alternative

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

∫ T

0

χ(t)
T

dt (7)

= lim
|∆|→0

τ∑

k=1

χ(xk)
T

·∆tk (8)

≈ 1
!

!∑

t=1

χ(t), (9)

where χ(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let Γ0 and
Γ1 be the sets of all observed read and write request sizes:

requestMix =
|Γ0|

|Γ0|+ |Γ1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

∑|Γ0|−1
j=0 Γ0,j

|Γ0|
(11)

requestSizewrite =

∑|Γ1|−1
j=0 Γ1,j

|Γ1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are offset in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially different threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

:!

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T · n(t) dt (1)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T · n(xk)
·∆tk (2)

≈ 1
!

!∑

t=1

∑n(t)
ι=1 φι(t)

n(t)
, (3)

where φι(t) is the size of the ι-th file at time t and n(t)
is the number of files at time t, ! is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([tk−1, tk], xk), 1 ≤ k ≤ τ} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . . ≤ xτ ≤ tτ = T ,
∆tk := tk − tk−1, and |∆| := maxk(∆tk), k ∈ {1, . . . , τ}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T
dt (4)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T
·∆tk (5)

≈ 1
!

!∑

t=1

n(t)∑

ι=1

φι(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Workload Mix

Request MixFiles Workload
Intensity

Average
Request Size

Request Access
Pattern

File Set
Size File Sizes Read

Proportion
Write

Proportion Sequential Random

optional

mandatory

alternative

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

∫ T

0

χ(t)
T

dt (7)

= lim
|∆|→0

τ∑

k=1

χ(xk)
T

·∆tk (8)

≈ 1
!

!∑

t=1

χ(t), (9)

where χ(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let Γ0 and
Γ1 be the sets of all observed read and write request sizes:

requestMix =
|Γ0|

|Γ0|+ |Γ1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

∑|Γ0|−1
j=0 Γ0,j

|Γ0|
(11)

requestSizewrite =

∑|Γ1|−1
j=0 Γ1,j

|Γ1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are offset in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially different threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

T

Size

Motivation Approach Conclusion Case Study

8 15-02-04

Workload Intensity

Application

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T · n(t) dt (1)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T · n(x
k

)
·�t

k

(2)

⇡ 1
z

zX

t=1

P
n(t)
◆=1 �◆(t)

n(t)
, (3)

where �◆(t) is the size of the ◆-th file at time t and n(t)
is the number of files at time t, z is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([t

k�1, tk], xk

), 1  k  ⌧} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0  x1  t1  x2  . . .  x

⌧

 t
⌧

= T ,
�t

k

:= t
k

� t
k�1, and |�| := max

k

(�t
k

), k 2 {1, . . . , ⌧}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

Z
T

0

P
n(t)
◆=1 �◆(t)

T
dt (4)

= lim
|�|!0

⌧X

k=1

P
n(xk)
◆=1 �◆(x

k

)

T
·�t

k

(5)

⇡ 1
z

zX

t=1

n(t)X

◆=1

�◆(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

Z
T

0

�(t)
T

dt (7)

= lim
|�|!0

⌧X

k=1

�(x
k

)
T

·�t
k

(8)

⇡ 1
z

zX

t=1

�(t), (9)

where �(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let �0 and
�1 be the sets of all observed read and write request sizes:

requestMix =
|�0|

|�0|+ |�1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

P|�0|�1
j=0 �0,j

|�0|
(11)

requestSizewrite =

P|�1|�1
j=0 �1,j

|�1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are o↵set in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially di↵erent threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

:!

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T · n(t) dt (1)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T · n(xk)
·∆tk (2)

≈ 1
!

!∑

t=1

∑n(t)
ι=1 φι(t)

n(t)
, (3)

where φι(t) is the size of the ι-th file at time t and n(t)
is the number of files at time t, ! is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([tk−1, tk], xk), 1 ≤ k ≤ τ} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . . ≤ xτ ≤ tτ = T ,
∆tk := tk − tk−1, and |∆| := maxk(∆tk), k ∈ {1, . . . , τ}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T
dt (4)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T
·∆tk (5)

≈ 1
!

!∑

t=1

n(t)∑

ι=1

φι(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Workload Mix

Request MixFiles Workload
Intensity

Average
Request Size

Request Access
Pattern

File Set
Size File Sizes Read

Proportion
Write

Proportion Sequential Random

optional

mandatory

alternative

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

∫ T

0

χ(t)
T

dt (7)

= lim
|∆|→0

τ∑

k=1

χ(xk)
T

·∆tk (8)

≈ 1
!

!∑

t=1

χ(t), (9)

where χ(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let Γ0 and
Γ1 be the sets of all observed read and write request sizes:

requestMix =
|Γ0|

|Γ0|+ |Γ1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

∑|Γ0|−1
j=0 Γ0,j

|Γ0|
(11)

requestSizewrite =

∑|Γ1|−1
j=0 Γ1,j

|Γ1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are offset in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially different threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

cf. Figure 2. In the following, we describe our selected set in
detail:

– File size: Physically allocated space on disk per file. It
determines the limits for sequential requests.

– File set size: Total physically allocated space on disk.
This value influences locality of requests, caching algo-
rithms, and data placement strategies.

– Workload intensity: We approximate the workload in-
tensity as the number of threads running in parallel.

– Request mix: Proportion between read and write re-
quests.

– Avg. request size: Average size of each request pro-
cessed by the storage system.

– Request access pattern: Requests can access data on
the disk sequentially or randomly.

In the following, we present the set of metrics we use to mea-
sure the performance-influencing factors. Our intention is to
monitor the respective parameters over time and to obtain
the mean values over the measurement period. Our moni-
toring tools capture discrete values over time periodically.
Thus, we approximate the integral over time to a summation
of discrete values used to calculate the mean values.
The file size may change significantly over time. Opera-

tions like creation of new files, deletion of files from the file
set, adding or removing data to existing files influence the
file size. Let [0, T], T > 0 be the observation period. To
capture the changes of the file sizes over time, we propose

fileSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T · n(t) dt (1)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T · n(xk)
·∆tk (2)

≈ 1
!

!∑

t=1

∑n(t)
ι=1 φι(t)

n(t)
, (3)

where φι(t) is the size of the ι-th file at time t and n(t)
is the number of files at time t, ! is the number of ac-
tual measurement points in the observation period, Ṗ :=
{([tk−1, tk], xk), 1 ≤ k ≤ τ} is a tagged partition of the inter-
val [0, T], i.e., 0 = t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . . ≤ xτ ≤ tτ = T ,
∆tk := tk − tk−1, and |∆| := maxk(∆tk), k ∈ {1, . . . , τ}. In
Equation (1) to Equation (3), the integral is transformed
to the Riemann sum using Ṗ and approximated equidistant
points in time.
The file set size is a highly changing value in a typical

workload life cycle. Thus, again, we propose to measure a
set of samples of the file set size over time.

fileSetSizeavg =

∫ T

0

∑n(t)
ι=1 φι(t)

T
dt (4)

= lim
|∆|→0

τ∑

k=1

∑n(xk)
ι=1 φι(xk)

T
·∆tk (5)

≈ 1
!

!∑

t=1

n(t)∑

ι=1

φι(t) (6)

In a typical workload, the number of clients changes over
time. We capture the number of clients accessing the system
over time to capture the workload intensity. The workload

Workload Mix

Request MixFiles Workload
Intensity

Average
Request Size

Request Access
Pattern

File Set
Size File Sizes Read

Proportion
Write

Proportion Sequential Random

optional

mandatory

alternative

Figure 2: Performance-Influencing Factors (cf. [23])

intensity, here, can be easily adjusted to use, e.g., the number
of requests per second.

workloadIntensityavg =

∫ T

0

χ(t)
T

dt (7)

= lim
|∆|→0

τ∑

k=1

χ(xk)
T

·∆tk (8)

≈ 1
!

!∑

t=1

χ(t), (9)

where χ(t) is the workload intensity (i.e., number of threads,
requests per second) at time t.

The request mix is captured by the following: Let Γ0 and
Γ1 be the sets of all observed read and write request sizes:

requestMix =
|Γ0|

|Γ0|+ |Γ1|
(10)

The average request size allows reasoning about the amount
of data the storage systems compute in one go. We calculate
the average request size for read and write requests as follows:

requestSizeread =

∑|Γ0|−1
j=0 Γ0,j

|Γ0|
(11)

requestSizewrite =

∑|Γ1|−1
j=0 Γ1,j

|Γ1|
(12)

Request access pattern: Data is organized in a fixed length of
sequences of bytes, i.e., blocks. When an application requests
an amount of data, one or several blocks are accessed in one
go. If the accessed blocks of two requests are adjacent, we
refer to these requests as sequential, even if they are offset in
time. Storage systems often implement algorithms to opti-
mize such sequential requests. They recognize requests whose
blocks are consecutive on disk, even if they are interrupted by
other requests. This case can easily happen in applications
with many execution threads. To detect sequential requests,
we propose Algorithm 1, illustrated in Figure 3 and explained
below.

Our algorithm determines the percentage of requests that
are accessed sequentially. To do so, we search for requests
whose block access boundaries are adjacent to each other.
The initial observation space comprises all occurred requests
from potentially different threads. To distinguish between
read and write access patterns, the request space is divided
into one read and one write sequence.

Figure 3 illustrates the idea of the algorithm. One request
accesses one or several blocks but is depicted as one box, re-
gardless of its size. In the illustration, we depicted sequential
accesses using the same pattern. The algorithm compares

:!

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

System

Motivation Approach Conclusion Case Study

9 15-02-04

Request Mix

R R W R W

R
R

R

W
W

5.2. Metrics Set Implementation 22

Again, we added a loop to collect the number of threads periodically with a period time
SLEEPTIME and a timestamp:

debian : $ while true ; do echo ”$ (date ’+%Y−%m−%d−%H:%M:%S ’) �� $ (ps aux −L | grep PROCESS | grep −v grep | wc − l) ” ; �� s l e e p SLEEPTIME; done

5.2.4. Request Size

The request size is collected by Blktrace. The operation system issues a request for
each read and write attempt. Blktrace allows to collect this issue and quantifies its
size. Thus, we can easily collect all requests sent to the storage system and calculate their
average request size in blocks of 512 Bytes.

5.2.5. Request Mix

Similar to collecting the request size in Section 5.2.4, we use Blktrace to collect the
request mix metric. Since Blktrace collects the read and write requests issued by the
operation system we can calculate the relation between issued read and write requests.
The request mix is calculated using Formula 5.1

reqMix = #readRequests

#readRequests +#writeRequests

(5.1)

This leads to the percentage fraction of the number of read requests. The result is in the
interval of [0,1].
5.2.6. Request Access Pattern

The pattern recognition algorithm respects the disk access properties of many parallel
threads accessing the disk on the DS8700 storage system. If several threads access to the
disk at the same time the global access pattern would be of a random nature, even if the
local one (of every single stream) is sequential. But in our case, the DS8700 storage system
recognizes the sequential pattern of each single stream of accesses and optimizes them. In
total, the global access of several sequential threads running in parallel is handled by the
DS8700 storage system as sequential ones. Thus, we can not use the pattern recognition
algorithm of the DTraceToolkit (see [B.G05, Gre05]) developed by Brendan Gregg, since
it classifies the access pattern as random if the first disk seek happens. In our case many
seeks can be caused, due to the I/O scheduler, nevertheless the inner access pattern is
sequential. To calculate the request access pattern again we use the Blktrace block
information. We use our pattern recognition algorithm to calculate a probability of seeing
sequential disk accesses (see Algorithm 1).

Each disk access is represented by a tri-tuple (timestamp, bock nr start, block nr end).
In this disk access space the algorithm searches for consecutive accesses. If two or more
consecutive accesses are found these are marked as sequential. Finally, we calculate the
relation between accesses marked as sequential and whom that are not. Thus, the algo-
rithm returns a value in the interval [0,1]. The higher the value the higher is the part of
sequential operations. If the result lies in the interval [0.5,1] we decide the operations to
be sequential and if the result lies in the interval [0,0.5[we decide the operations to be
random.

A huge space of accesses can lead to an overestimation of the number of sequential accesses.
With a higher number of accesses in the search space the probability for consecutive block
numbers increases. This would lead in an overestimation of sequential accesses. To prevent
the overestimation the search space has to be limited by a time sliding window. Thus, we
introduced a window to limit the number of explored accesses.

22

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

System

Motivation Approach Conclusion Case Study

10 15-02-04

Request Size

R R W R W

Read Req Write Req

Request Size Read Request Size Write

1 Title

1.1 Subtitle

requestSize =

P|�|�1
j=0 �j

|�| , (1)

(2)

� contains all observed request sizes

accessPattern(x) =

(
sequential, reqPattern(x) � 0.5

random, reqPattern(x) < 0.5

Axel Busch

Axel Busch

Axel Busch

Axel Busch

Axel Busch

Axel Busch

1

1 Title

1.1 Subtitle

requestSize =

P|�|�1
j=0 �j

|�| , (1)

(2)

� contains all observed request sizes

accessPattern(x) =

(
sequential, reqPattern(x) � 0.5

random, reqPattern(x) < 0.5

Axel Busch

Axel Busch

Axel Busch

Axel Busch

Axel Busch

Axel Busch

1

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

System

Motivation Approach Conclusion Case Study

11 15-02-04

Access Pattern

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

12 15-02-04

Access Pattern
1.  Searching for consecutive block access
2.  Counts the number of consecutive blocks
3.  Results in number of consecutive block accesses in percent

Figure 3: Access Pattern Recognition Algorithm Illustration

each request to all following requests and thus detects that
requests 1, 2, 8, and 9 are sequential, as they access consecu-
tive blocks. Additionally, it detects that requests 4, 5, 6, 10,
11, and 12 are sequential.

Algorithm: The algorithm’s input parameter is a list of
n pairs. A pair is defined as R

i

:= (block start, block end),
where 0  block start  block end represents the start and
end block number of the i-th request access. The algorithm
compares the end block numbers of one request with the
start block numbers of the following requests to search for
sequential requests. It outputs the proportion of sequential
requests in the observation space.
To improve run time and avoid overestimation of sequen-

tial requests, we enhanced the algorithm’s performance by
dividing the observation space into i subsets S

i

. Hence, the
complexity of our algorithm results in O(n) at best and
O(!dn

!

e2) at worst.

S
i

:=

(
{R

i·dn
! e, . . . , R(i+1)·dn

! e�1}, (i+ 1)dn
!

e  n

{R
i·dn

! e, . . . , Rn�1}, else
,

(13)

where i 2 {0, . . . ,!� 1} and ! is the number of used subsets.
The result access pattern ratio is the average of Algorithm 1’s
result for each subset:

accPatternRatio(R) =
P

i getAccPat(Si)
!

accPattern(R) =

⇢
sequential, accPatternRatio(R) � 0.5

random, else

(14)

Our approach avoids overestimation of sequential requests:
Sequential requests that are far away from each other in the
observation space are not included in the access pattern ratio
accPatternRatio.
Similar request access pattern heuristics do not respect

sequential requests if they are not directly followed up, but in-
terrupted by a non-sequential request, cf. [12]. Our approach
respects this and allows a configuration of the observation
space using an observation window.

2.2 Characterization Automation
To automate the proposed workload characterization ap-
proach, we have extended a tool to automatically execute a
workload and obtain its parameters by observing the set of
relevant metrics. The tool, called Storage Performance Ana-
lyzer (SPA) [3], is a software that supports fully-automatic
systematic performance measurements and monitoring of
storage system properties. Its architecture allows to analyze

Algorithm 1 Access Pattern Recognition Algorithm

Configuration:

R Sequence of request pairs
req Number of requests
req seq 0

Function getAccPat(R):

while i < req do // Iterate through requests
for j such that i < j < req do

block end = R
i2 // End block of request R

i

block start = R
j1 // Start block of request R

j

if block end = block start then
req seq req seq + 2 // Count both R

i

, R
j

R R \ {R
i

, R
j

}
continue while;

end if

end for

i i+ 1
end while

return

req seq

req

arbitrary application workloads. Alternatively, it supports
the integration of workload generators, e.g., benchmarks.
Performing manual steps is highly error-prone. SPA sup-

ports automatic measurements and therefore allows a co-
ordinated execution of the original workloads. To enable
the extraction of workload parameters, the benchmark con-

troller was extended to support the synchronized and par-
allel execution of several workloads and to distinguish these
parallel workloads when monitoring. The actual execution,
i.e., execute start and stop commands and gathering of log
files, of the particular workload is realized by the benchmark

driver component. For our monitoring goals, we extended
the tool architecture by adding a monitor component, cf. class
diagram in Figure 4.

The core of the monitor component is the monitor driver.
It controls the monitoring tools to be prepared, started and
stopped on the system under test, as well as processing its
measurement values, i.e., extracting a metrics set. The class
diagram shows several concrete monitor drivers, e.g., File-
sizeMonitorDriver, which is an implementation of the ab-
stract monitor driver class. IndependentVariables stores
the configuration parameters of the monitoring tools. To
extract request block relevant metrics, we use Blktrace [7]
in SPA.
Blktrace is a block layer I/O tracing tool. Since it

collects data on the application layer it is executed on the
system under test. Using Blktrace, we obtain detailed disk
request trace information. The powerful tracing mechanism
of Blktrace allows conclusions about request properties.
The raw data of Blktrace is used to extract the actual
request block relevant workload parameter metrics.
Our experiment setup is shown in Figure 5. A controller

machine starts and coordinates the benchmark and monitor-
ing tools on the system under test (SUT), which is accessed
using an SSH connection. After each successful workload ex-
ecution the controller machine collects the raw measurement
data from the SUT and extracts the workload parameters
from the raw data. Finally, the results are stored in an
SQLite database.

The measurement execution sequence works as follows: i)
a preparation phase that performs an initial warm up, ii) a
workload execution and monitoring phase, iii) a phase that

5.2. Metrics Set Implementation 23

Algorithm 1 Access Pattern Recognition Algorithm
ops← Number of operations
ops seq ← 0
block start← {∀ blocks: blocks ∈ {block0, . . . , blockops−1}}
block end← {∀ blocks: blocks ∈ {block0, . . . , blockops−1}}
Algorithm:

while i < ops do
for all j such that i + 1 < j < ops do

if block end

i

= block start

j

then
ops seq ← ops seq + 2
block start← block start \ {block start

i

, block end

j

}
block end← block end \ {block end

i

, block end

j

}
continue while;

end if
end for

end while
return ops seq

ops

5.2.7. Operations per Request

The operations per request will be extracted by modifying the access pattern algorithm.
Each consecutive disk access is interpreted as accesses on one request. With respect
to Filebench behaviour the strict consecutive disk access is softed. Since Filebench

does not access strictly consecutive we allowed a gap between two accesses. This gap
was set to the average block distance between two sequencing accesses. If the distance
between two consecutive accesses is less than the average distance it is handled as two
consecutive access. In total the algorithm counts how often the sequential or almost
sequential access is interrupted to get an approximation of the average operations per
request (see Algorithm 2). To prevent an overestimation the analysis space is limited by a
time sliding window. This metric is necessarily to construct a FFSB configuration file that
fits the characteristics of the extracted workload. Since it does not have any contribution
to the actual performance prediction this metric is not described in Section 3.4.1 and is
not respected in the workload characterization approach.

23

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

13 15-02-04

Application

Workload Emulation

Workload Generator

Monitoring
Parameters

e.g., Response Time

Results of
emulated
Workload

Workload
Characteristics

Model

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

14 15-02-04

  Workload characterization performed on an IBM System z and
DS8700 storage system
  Both systems represent high-end virtualized environments for critical
business applications

System Setup System Under Study
IBM System z

Processors, Memory

PR/SM (Hypervisor)

LPAR1 LPAR2

z/Linux z/Linux

App. App.

IBM DS8700

Harddisks (RAID)

Storage Controller

Volatile
Cache

Non-Volatile
Cache

Switched Fibre Channel

Fi
br

e
C

ha
nn

el

Storage-Performance-Influencing Factors

Workload

Requests

Size Mix Pattern

Locality

System

Operating System

File System I/O Scheduler

Hardware

Derived from Noorshams et al. (2012)

Introduction Foundations Methodology Results Related Work Conclusion

Dominik Bruhn – Modeling and Experimental Analysis of Virtualized Storage Performance October 12, 2012 5/25Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

15 15-02-04

  System z configuration:

Debian z/Linux VM (=LPAR)

  2 IFLs (cores) ~2760 MIPS
  4 GB RAM

  DS8700 configuration:

  50 GB volatile cache (VC)
  2 GB non-volatile cache (NVC),

i.e., battery-backed cache
  RAID5 array with 7 HDDs (15k r/min)

with 1 hot spare disk

System Setup System Under Study
IBM System z

Processors, Memory

PR/SM (Hypervisor)

LPAR1 LPAR2

z/Linux z/Linux

App. App.

IBM DS8700

Harddisks (RAID)

Storage Controller

Volatile
Cache

Non-Volatile
Cache

Switched Fibre Channel

Fi
br

e
C

ha
nn

el

Storage-Performance-Influencing Factors

Workload

Requests

Size Mix Pattern

Locality

System

Operating System

File System I/O Scheduler

Hardware

Derived from Noorshams et al. (2012)

Introduction Foundations Methodology Results Related Work Conclusion

Dominik Bruhn – Modeling and Experimental Analysis of Virtualized Storage Performance October 12, 2012 5/25Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

16 15-02-04

Tools
Filebench as storage system benchmark

  Used for generating workloads to be
characterized

  Storage Performance Analyzer as
measurement coordinator

https://github.com/Filebench-Revise

http://research.spec.org/tools/overview/spa.html

https://github.com/FFSB-Prime/ffsb

FFSB   Flexible File System Benchmark as
application layer I/O benchmark

  Used for emulating workloads

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

17 15-02-04

Systematic experiments
SPA extension allowing automatized
  Workload execution
  Monitoring mechanisms
  Workload characteristics extraction

Workload results

File server Mail server

File size 17 KiB 130 KiB

File set size 684 MiB 1163 MiB

Workload intensity 16 50

Request mix 56 % 42 %

Request size (r) 14 KiB 103 KiB

Request size (w) 15 KiB 79 KiB

Access pattern (r) 29 % 97 %

Access pattern (w) 57 % 99 %

Workload characterization results [avg]:

  Measurements performed using
1 min warm up + 20x 5 min
benchmark time

  Low standard deviations

synchronized

Benchmark
Controller

Benchmark Driver

Monitor Driver

Benchmark Harness

Controller Machine

SQLite Database

SUT

Benchmark

Monitor

SSH

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

18 15-02-04

Evaluation Scenarios

Workload characterization approach evaluated by two case studies

I)  Workload Characterization
 How accurate is the estimation of the workload characterization approach?

II)  Scenarios
a)  Migration scenario

How accurate is the estimation in migration scenarios?

b)  Consolidation scenario
 How accurate is the estimation in consolidation scenarios?

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

19 15-02-04

Evaluation: Estimation Accuracy

Read error Write error
Mail server 20.82 % 35.72 %
File server 3.93 % 36.96 %

Response
Times Comparison

0

5

10

15

20

Mail
server (r)

Mail
server (w)

File
server (r)

File
server (w)

Original Emulation

IBM System z + DS8700

[ms]

How accurate is the estimation of the workload characterization approach?

Original
Workload

Emulated
Workload

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

Response
Times

WCM

20 15-02-04

Evaluation: Migration Scenario
How accurate is the estimation in migration scenarios?

Sun Fire X4440 Sun Fire X4440 0
10
20
30
40
50
60
70

File server (r) File server (w)

Original Emulation

Read error Write error
File server 21.59 % 20.98 %

[ms]

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

Response
Times Comparison

Original
Workload

Emulated
Workload

WCM
FS

Response
Times

21 15-02-04

Evaluation: Consolidation Scenario
How accurate is the estimation in consolidation scenarios?

0

15

30

45

60

75

90

Mixed (r) Mixed (w)

Original Emulation

Read error Write error
Mixed 12.95 % 24.51 %

[ms]

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

Sun Fire X4440 Sun Fire X4440

Response
Times Comparison

Original
Workload

Emulated
Workload

WCM
MS

Response
Times

WCM
FS

WCM
MS

22 15-02-04

Evaluation: Summary

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

þ Estimation Accuracy
þ Migration Scenario
þ Migration + Consolidation Scenario

 Accurate results for a fast initial
performance estimation in typical scenarios

23 15-02-04

Conclusion

•  Fully automated approach to derive a workload characteristics model
•  Capturing I/O performance-relevant workload parameters using a

formalized metrics set
•  Approach applied in real-world scenarios using state-of-the art

virtualization hardware

Summary

•  Promising accuracy for fast initial performance estimation
•  Migration and consolidation scenarios show low error rates < 25 %

Evaluation results

•  Using workload characterization approach as a basis for other
performance models.

•  Applying scenarios when interpolate and extrapolate workload
parameters

Future Work

Axel Busch – Automated Workload Characterization for I/O Performance Analysis in Virtualized Environments

Motivation Approach Conclusion Case Study

