
Utilizing Performance Unit Tests

To Increase Performance Awareness
Vojtěch Horký, Peter Libič, Lukáš Marek,

Antonín Steinhauser and Petr Tůma

February 4, 2015

Charles University in Prague

Motivation: Choosing a Plotting Library

We need to plot graphs for our web application in Java.

Our choice is driven by various requirements.

– Available features

– Price

– Sane and documented API

– Performance

– . . .

Motivation: Choosing a Plotting Library

We need to plot graphs for our web application in Java.

Our choice is driven by various requirements.

– Available features

– Price

– Sane and documented API

– Performance

– . . .

Motivation: Choosing a Plotting Library

Based on its Performance

0 2000 4000 6000 8000 10000

50
0

10
00

15
00

20
00

25
00

Comparison when plotting 800x600 PNG image

Number of data points plotted

E
xe

cu
ti

on
 t

im
e

[m
s]

●
●

●
●

●

●

●

●

●

●

●

●
●

●●● ● ●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

GRAL
XChart
JFreeChart

Issues With Low-Impact Performance Decisions

To decide which of the libraries is faster we had to

– design and implement a test

– and evaluate the results.

Issues With Low-Impact Performance Decisions

To decide which of the libraries is faster we had to

– design and implement a test

– and evaluate the results.

This takes time. Often, we

– assume the performance differences are negligible

– or fallback to previous experience with similar task.

Our Goal

Help the developer with decisions that have low performance impact.

– Without extra effort from the developer.

– Give the answers as fast as possible.

Make developers aware of the actual performance of their code.

(We do not aim to correct bad architectural & design decisions.)

The Idea: Extend API Documentation with

Performance Information

Why API documentation?

– We target methods and classes.

– Available even in IDE as context help.

The Idea: Extend API Documentation with

Performance Information

Why API documentation?

– We target methods and classes.

– Available even in IDE as context help.

How it would be used?

When coding, developers would see the performance information

together with the method detail.

Tools: From JavaDoc . . .

Tools: . . . to PerfJavaDoc

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Workload

Generator

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

Getting Workloads from Performance Unit Tests

Performance

Unit Test

Workload

Generator

Workload

Parameters

Measurements
Condition

Evaluation

Workload
Test

Condition

Method

Selection

Method Under

Test

Test Harness

This provides data for the performance documentation.

From Performance Unit Tests to Documentation

Connecting the workload to the method

void sort(long [] data) {

...

}

From Performance Unit Tests to Documentation

Connecting the workload to the method
@Workload("pkg.Workload.longArray")

void sort(long [] data) {

...

}

From Performance Unit Tests to Documentation

Connecting the workload to the method
@Workload("pkg.Workload.longArray")

void sort(long [] data) {

...

}

long[] longArray(int size)

...

}

From Performance Unit Tests to Documentation

Connecting the workload to the method
@Workload("pkg.Workload.longArray")

void sort(long [] data) {

...

}

Getting labels for the plots

long[] longArray(int size)

...

}

From Performance Unit Tests to Documentation

Connecting the workload to the method
@Workload("pkg.Workload.longArray")

void sort(long [] data) {

...

}

Getting labels for the plots
@Descr("Generate array filled with random longs")

long[] longArray(int size)

...

}

From Performance Unit Tests to Documentation

Connecting the workload to the method
@Workload("pkg.Workload.longArray")

void sort(long [] data) {

...

}

Getting labels for the plots
@Descr("Generate array filled with random longs")

long[] longArray(@Param("Array size") int size)

...

}

Displaying Performance Interactively
– Measure on demand

– Cache & share the results

– Refine results continuously (on background)

Displaying Performance Interactively
– Measure on demand

– Cache & share the results

– Refine results continuously (on background)

●

●

●

●

●

●

2000 6000 10000

0
20

40
60

80
10

0
12

0
14

0

After 1 second

●

●

●

●

●

●

2000 6000 10000

0
20

40
60

80
10

0
12

0
14

0

After 5 seconds

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●

2000 6000 10000

0
20

40
60

80
10

0
12

0
14

0

After 5 minutes

Collection size

E
xe

cu
ti

on
 t

im
e

[u
s]

Experiment: Faster Applications with Extended

Documentation

Volunteer students (advanced course of Java).

– Groups with and without performance documentation.

– Task to solve with Java JDOM library.

Experiment: Faster Applications with Extended

Documentation

Volunteer students (advanced course of Java).

– Groups with and without performance documentation.

– Task to solve with Java JDOM library.

Results

Participants have problems judging performance of their own code:

expected run-times differed in orders of magnitude.

Not feasible to decide whether one group writes faster applications

(we would need thousands of students to have statistically reliable

comparison of the groups).

Experiment: Improve Existing Applications

Simulate developers caring about performance.

Use similar – but faster – methods guided by results from the

extended documentation.

Experiment: Improve Existing Applications

Simulate developers caring about performance.

Use similar – but faster – methods guided by results from the

extended documentation.

Applications

– Buildhealth

– Reports merged results from various test frameworks.

– METS Downloader

– Gathers bibliographic meta-information.

(Selected because of a reasonable size and use of JDOM.)

Improving Existing Applications: Results

Application Before After

Buildhealth

METS downloader

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code

METS downloader

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

METS downloader

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

Whole application

METS downloader

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

Whole application 2.52 s 2.40 s

METS downloader

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

Whole application 2.52 s 2.40 s

METS downloader
Changed code

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

Whole application 2.52 s 2.40 s

METS downloader
Changed code 131.5 ms 27.4 ms

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

Whole application 2.52 s 2.40 s

METS downloader
Changed code 131.5 ms 27.4 ms

Whole application

Improving Existing Applications: Results

Application Before After

Buildhealth
Changed code 938.3 ms 908.4 ms

Whole application 2.52 s 2.40 s

METS downloader
Changed code 131.5 ms 27.4 ms

Whole application 120.2 s 120.4 s

Conclusion: Utilizing Performance Unit Tests To

Increase Performance Awareness

Extend the API documentation and make the developers aware of

performance of small parts of the code and help them write faster

applications.

http://d3s.mff.cuni.cz/software/spl

Conclusion: Utilizing Performance Unit Tests To

Increase Performance Awareness

Extend the API documentation and make the developers aware of

performance of small parts of the code and help them write faster

applications.

http://d3s.mff.cuni.cz/software/spl

Thank You!

