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SSD Storage

» Solid-state drives (SSDs) widely deployed
* e.g., desktops, data centers

» Pros:
 High throughput
* Low power
« High resistance

» Cons:

« Limited lifespan
« Garbage collection (GC) overhead



Motivation

» Characterizing GC performance is important for
understanding SSD deployment

» We consider mathematical modeling:
« Easy to parameterize
« Faster to get results than empirical measurements



Challenges

» Data locality
« Data access frequencies are non-uniform
« Hot data and cold data co-exist

* More general access patterns are possible (e.g.,
warm data [Muralidhar, OSDI'14])

» Wide range of GC implementations



Two Questions

» What is the impact of data locality on GC
performance?

» How data locality can be leveraged to improve
GC performance?



Our Contributions

A general analytical framework that characterizes

locality-oblivious GC and locality-aware GC

> A non-uniform workload model

» A probabilistic model for a general family of locality-
oblivious GC algorithms

» A model for locality-aware GC with data grouping

> Validation and trace-driven simulations



Related Work on GC

» Theoretical analysis on GC

« Huetal (SYSTOROQ09), Bux et al (Performancel0), Desnoyers
(SYSTOR12): model greedy algorithm on GC

« Lietal. (Sigmetrics13): model design tradeoff of GC between
performance and endurance

* Benny Van Houdt (Sigmetrics13, Performancel3): model write
amplification of various GC algorithms under uniform workload
and hot/cold workload

* Yang et al. (MSST14): analyzing the performance of various
hotness-aware GC algorithms

» Our work focuses on the impact of data locality on
GC performance under general workload



How SSDs Work?

» Organized into blocks

» Each block has a fixed number (e.g., 64 or 128)
of fixed-size (e.g., 4-8KB) pages

» Three basic operations: read, write, erase
* Read, write: per-page basis
« Erase: per-block basis

» Out-of-place write for updates:
« Write to a clean page and mark it as valid
« Mark original page as invalid



How SSDs Work?

» Garbage collection (GC) reclaim clean pages
* Choose a block to erase
« Move valid pages to another clean block
« Erase the block
Block A m_ ——= era.se - Block A
[ Block B ) hwe ‘b Block B]
Before GC After GC

» Limitations:
» Blocks can only be erased a finite number of times
« SLC: 100K, MLC: 10K, 3 bits MLC (several K to several hundred)

« GC introduces additional writes (cleaning cost)
» Degrades both performance and endurance



Workload Model

» Clustering
« Only a small proportion of pages are accessed
« Let f, be proportion of logical pages that are active

» Skewness
» Access frequency of each page varies significantly
e M access types

« Two vectors: r = (11, 7y, w0, ), F = (fi, far oor fir)

* type-i pages account for a proportion f; of active pages and
are uniformly accessed by a proportion r; of requests

» Both clustering and skewness are observed In
real-world traces
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GC Algorithms

» Greedy Random Algorithm (GRA)

» Defined by a window size parameter d

« Two steps to select a block for GC
 First select d blocks with the fewest valid pages (greedy)
« Then uniformly select a block from the d blocks (random)

» Special cases
e d = 1. GREEDY algorithm
e d = N: RANDOM algorithm
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Locality-oblivious GC

» Write and GC process with single write frontier
* One block is allocated as the write frontier at any time

» Writes are sequentially directed to write frontier
* |nternal writes: due to GC
« External writes: due to workload

» Write frontier is sealed until all clean pages in
the block are used up

» Another clean block Is allocated as write frontier
« GC is triggered to reclaim a block
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State of Blocks

Write
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» k: total number of pages in a block

> C;(d): average number of type-i valid pages in the block
chosen for GC

> C,(d): Internal page writes (page writes due to GC)
« Sum of C;(d) 13



State of Blocks

Write
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» Approximation: d candidate blocks are chosen from the
d blocks sealed in the earliest time
« Earlier sealed blocks have fewer valid pages on average
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General Analysis Framework

» Average cleaning cost in each GC is

C (d) ifd <N
% C (d)+(1-"2)k otherwise.

e N, is number of active blocks and C,(d) can be computed via

C(d) = {

C(d)=3 C(d) !
= where p'— + Si;((f_édﬁ);q

~ _ 1&=C,(d)X1-P)"?
MCI' (d)= 1+P'xd—(1-P)Ya

> C(d) is a function of d, f,,r; and f;

* GC cleaning cost is affected by GC algorithms and
workload locality (both clustering and skewness)
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Case Studies

» GRA with window size d = o(N)
* Includes the case of GREEDY (d =1)

C(d)=Y. (k-C(d)r,/ (e* 1), where 4, = &5,
=1

» GRA with window size d = N,
* Includes the case of RANDOM (d = N)

C(d)=(1-NS/d)k

» GRA with window size d = aN,

C(d) =Y. (k-C(d)r, /[(1+a A )" * ~1], where 4, = L0
i=1
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Locality-aware GC

» Differentiating data reduces GC cleaning cost

» Consider locality-aware GC using data grouping
 Differentiating different types of data pages
« Storing them separately in separate regions

» Issues to address:
« How data grouping influences the GC performance

e How much is the influence for workloads with different
degrees of locality
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System Architecture

Sealed Write Sealed Write Inactive
blocks frontier 1 blocks frontier n blocks
Cl { . Cn
k-C, { k-C,
Region 1 Region n Region n+1

» The whole SSD is divided into n + 1 regions
» Each region is used to store one particular type of data

» The n 4+ 1 regions can be viewed as n 4+ 1 independent
sub-systems
» Each of the first n sub-systems is fed with a uniform workload

* Previous analysis on locality-oblivious GC can be applied in
each region
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Model Validation

» DiskSim + SSD extension developed by Microsoft

» Workloads:
« Skewed workload: f, = 0.1,n = 2,r = (0.8,0.2), f = (0.2,0.8)

* Fine-grained workload: f, = 0.1,r = (0.84,0.3,0.2,0.1),f = (0.2,0.2,0.3,0.3)
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Our model matches simulation results 19



Impact of Data Locality on
Locallty obI|V|ous GC
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» Cleaning cost increases as either the active region size
or skewness increases

» The increase is more pronounced for a smaller d
« GREEDY algorithm shows the most increase
» Data locality has no impact on RANDOM algorithm 20



Trace-driven Evaluation
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Locality-aware GC

« GREEDY (RANDOM) gives the best (worst) performance
« GREEDY has the most varying performance across workloads

» Locality-aware GC

« Cleaning cost can be significantly reduced with data grouping
« The further reduction is marginal when data is classified into more types



Summary

» Propose a general analytical model to study the impact
of data locality on GC performance
» Analyze various locality-oblivious GC under different workloads
« Analyze the impact of locality-awareness with data grouping
* Conduct DiskSim simulation and trace-driven evaluations

» Cleaning cost depends on clustering/skewness, and
Impact varies across algorithms

» Data grouping efficiently reduces the cleaning cost
 Different spare block allocations show significant differences

» Future work
« More validation beyond DiskSim simulations
* GC implementation in SSD-aware file systems

22



Thank You!

» Contact:

 Patrick P. C. Lee
http://www.cse.cuhk.edu.hk/~pclee
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http://www.cse.cuhk.edu.hk/~pclee

Backup
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Analysis on locality-aware GC

» One design issue of locality-aware GC

« How many spare blocks should be allocated to each
region

 Allocation b = (by, b,, ..., b,,): proportion b; of spare
blocks are allocated to region i

» Average cleaning cost of locality-aware GC with
GREEDY algorithm in region i Is

C,=Wy(—re ™) /[2], where S, =

(1-S;)k — (A=8)fufi+Sh;

 Allocation of spare blocks affects the cleaning cost of
locality-aware GC
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Performance Gain with
Locality Awareness
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» Data grouping effectively reduces GC cleaning cost

» Spare block allocation has significant impact on the
performance of locality-aware GC
« The impact decreases as the clustering increases

« The impact increases as the skewness increases -



