Impact of Data Locality on Garbage Collection in SSDs: A General Analytical Study

Yongkun Li, Patrick P. C. Lee, John C. S. Lui, Yinlong Xu

The Chinese University of Hong Kong
University of Science and Technology of China
SSD Storage

Solid-state drives (SSDs) widely deployed
 - e.g., desktops, data centers

Pros:
 - High throughput
 - Low power
 - High resistance

Cons:
 - Limited lifespan
 - Garbage collection (GC) overhead
Motivation

- Characterizing GC performance is important for understanding SSD deployment

- We consider **mathematical modeling**:
 - Easy to parameterize
 - Faster to get results than empirical measurements
Challenges

- **Data locality**
 - Data access frequencies are non-uniform
 - Hot data and cold data co-exist
 - More general access patterns are possible (e.g., warm data [Muralidhar, OSDI’14])

- **Wide range of GC implementations**
Two Questions

- What is the impact of data locality on GC performance?

- How data locality can be leveraged to improve GC performance?
Our Contributions

A general analytical framework that characterizes locality-oblivious GC and locality-aware GC

- A non-uniform workload model
- A probabilistic model for a general family of locality-oblivious GC algorithms
- A model for locality-aware GC with data grouping
- Validation and trace-driven simulations
Related Work on GC

- Theoretical analysis on GC
 - Hu et al. (SYSTOR09), Bux et al (Performance10), Desnoyers (SYSTOR12): model greedy algorithm on GC
 - Li et al. (Sigmetrics13): model design tradeoff of GC between performance and endurance
 - Benny Van Houdt (Sigmetrics13, Performance13): model write amplification of various GC algorithms under uniform workload and hot/cold workload
 - Yang et al. (MSST14): analyzing the performance of various hotness-aware GC algorithms

- Our work focuses on the impact of data locality on GC performance under general workload
How SSDs Work?

- Organized into blocks
- Each block has a fixed number (e.g., 64 or 128) of fixed-size (e.g., 4-8KB) pages
- Three basic operations: read, write, erase
 - Read, write: per-page basis
 - Erase: per-block basis
- Out-of-place write for updates:
 - Write to a clean page and mark it as valid
 - Mark original page as invalid
How SSDs Work?

- **Garbage collection (GC)** reclaim clean pages
 - Choose a block to erase
 - Move valid pages to another clean block
 - Erase the block

- **Limitations:**
 - Blocks can only be erased a finite number of times
 - SLC: 100K, MLC: 10K, 3 bits MLC (several K to several hundred)
 - GC introduces additional writes (cleaning cost)
 - Degrades both performance and endurance
Clustering
- Only a small proportion of pages are accessed
- Let f_a be proportion of logical pages that are active

Skewness
- Access frequency of each page varies significantly
- n access types
- Two vectors: $r = (r_1, r_2, \ldots, r_n), f = (f_1, f_2, \ldots, f_n)$
 - type-i pages account for a proportion f_i of active pages and are uniformly accessed by a proportion r_i of requests

Both clustering and skewness are observed in real-world traces
GC Algorithms

Greedy Random Algorithm (GRA)
- Defined by a window size parameter d
- Two steps to select a block for GC
 - First select d blocks with the fewest valid pages (greedy)
 - Then uniformly select a block from the d blocks (random)

Special cases
- $d = 1$: GREEDY algorithm
- $d = N$: RANDOM algorithm
Locality-oblivious GC

- Write and GC process with single write frontier
 - One block is allocated as the write frontier at any time

- Writes are sequentially directed to write frontier
 - Internal writes: due to GC
 - External writes: due to workload

- Write frontier is sealed until all clean pages in the block are used up

- Another clean block is allocated as write frontier
 - GC is triggered to reclaim a block
State of Blocks

- k: total number of pages in a block
- $\bar{C}_i(d)$: average number of type-i valid pages in the block chosen for GC
- $\bar{C}_a(d)$: Internal page writes (page writes due to GC)
 - Sum of $\bar{C}_i(d)$
Approximation: \(d \) candidate blocks are chosen from the \(d \) blocks sealed in the earliest time
- Earlier sealed blocks have fewer valid pages on average
General Analysis Framework

- Average cleaning cost in each GC is:

\[
\bar{C}(d) = \begin{cases}
\bar{C}_a(d) & \text{if } d \leq N_a, \\
\frac{N_a}{d} \bar{C}_a(d) + (1 - \frac{N_a}{d})k & \text{otherwise.}
\end{cases}
\]

- \(N_a \) is number of active blocks and \(\bar{C}_a(d) \) can be computed via:

\[
\bar{C}_a(d) = \sum_{i=1}^{n} \bar{C}_i(d)
\]

where:

\[
P' = \frac{r_i(k - \bar{C}_a(d))(1-P'^N_a-d)}{(N_a+1)(1-S')kf_a}
\]

- \(\bar{C}(d) \) is a function of \(d, f_a, r_i \) and \(f_i \)

- GC cleaning cost is affected by GC algorithms and workload locality (both clustering and skewness)
Case Studies

- GRA with window size $d = o(N)$
 - Includes the case of GREEDY ($d = 1$)
 \[
 \overline{C}(d) = \sum_{i=1}^{n} (k - \overline{C}(d))r_i / (e^{A_i} - 1), \text{ where } A_i = \frac{(k-\overline{C}(d))r_i}{(1-S')kf_i}.
 \]

- GRA with window size $d \geq N_a$
 - Includes the case of RANDOM ($d = N$)
 \[
 \overline{C}(d) = (1 - NS / d)k
 \]

- GRA with window size $d = \alpha N_a$
 \[
 \overline{C}(d) = \sum_{i=1}^{n} (k - \overline{C}(d))r_i / [(1 + \alpha A_i)e^{(1-\alpha)A_i} - 1], \text{ where } A_i = \frac{(k-\overline{C}(d))r_i}{(1-S')kf_i}.
 \]
Locality-aware GC

- Differentiating data reduces GC cleaning cost
- Consider locality-aware GC using data grouping
 - Differentiating different types of data pages
 - Storing them separately in separate regions

- Issues to address:
 - How data grouping influences the GC performance
 - How much is the influence for workloads with different degrees of locality
The whole SSD is divided into $n + 1$ regions

Each region is used to store one particular type of data

The $n + 1$ regions can be viewed as $n + 1$ independent sub-systems
 - Each of the first n sub-systems is fed with a uniform workload
 - Previous analysis on locality-oblivious GC can be applied in each region
Model Validation

- DiskSim + SSD extension developed by Microsoft

- Workloads:
 - Skewed workload: \(f_a = 0.1, n = 2, r = (0.8, 0.2), \ f = (0.2, 0.8) \)
 - Fine-grained workload: \(f_a = 0.1, r = (0.4, 0.3, 0.2, 0.1), f = (0.2, 0.2, 0.3, 0.3) \)

Our model matches simulation results
Impact of Data Locality on Locality-oblivious GC

- Cleaning cost increases as either the active region size or skewness increases.
- The increase is more pronounced for a smaller d.
 - GREEDY algorithm shows the most increase.
 - Data locality has no impact on RANDOM algorithm.
Trace-driven Evaluation

Locality-oblivious GC

- GREEDY (RANDOM) gives the best (worst) performance
- GREEDY has the most varying performance across workloads

Locality-aware GC

- Cleaning cost can be significantly reduced with data grouping
- The further reduction is marginal when data is classified into more types
Summary

- Propose a general analytical model to study the impact of data locality on GC performance
 - Analyze various locality-oblivious GC under different workloads
 - Analyze the impact of locality-awareness with data grouping
 - Conduct DiskSim simulation and trace-driven evaluations

- Cleaning cost depends on clustering/skewness, and impact varies across algorithms

- Data grouping efficiently reduces the cleaning cost
 - Different spare block allocations show significant differences

- Future work
 - More validation beyond DiskSim simulations
 - GC implementation in SSD-aware file systems
Thank You!

Contact:

• Patrick P. C. Lee
 http://www.cse.cuhk.edu.hk/~pclee
Backup
Analysis on locality-aware GC

- One design issue of locality-aware GC
 - How many spare blocks should be allocated to each region
 - Allocation \(b = (b_1, b_2, \ldots, b_n) \): proportion \(b_i \) of spare blocks are allocated to region \(i \)

- Average cleaning cost of locality-aware GC with GREEDY algorithm in region \(i \) is

\[
C_i = -W_0 \left(-\frac{1}{1-S_i} e^{-\frac{1}{1-S_i}} \right) / \left[(1-S_i)^k \right], \text{ where } S_i = \frac{Sb_i}{(1-S)f_a f_i + Sb_i}.
\]

- Allocation of spare blocks affects the cleaning cost of locality-aware GC
Performance Gain with Locality Awareness

- Data grouping effectively reduces GC cleaning cost
- Spare block allocation has significant impact on the performance of locality-aware GC
 - The impact decreases as the clustering increases
 - The impact increases as the skewness increases