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SSD Storage 

Solid-state drives (SSDs) widely deployed 

• e.g., desktops, data centers 

Pros: 

• High throughput 

• Low power 

• High resistance 

Cons: 

• Limited lifespan 

• Garbage collection (GC) overhead 
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Motivation 

Characterizing GC performance is important for 

understanding SSD deployment 

 

We consider mathematical modeling: 

• Easy to parameterize 

• Faster to get results than empirical measurements 
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Challenges 

Data locality 

• Data access frequencies are non-uniform 

• Hot data and cold data co-exist 

• More general access patterns are possible (e.g., 

warm data [Muralidhar, OSDI’14]) 

 

Wide range of GC implementations 
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Two Questions 

What is the impact of data locality on GC 

performance? 

 

How data locality can be leveraged to improve 

GC performance? 
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Our Contributions 

 A non-uniform workload model 

 A probabilistic model for a general family of locality-

oblivious GC algorithms 

 A model for locality-aware GC with data grouping 

 Validation and trace-driven simulations 
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A general analytical framework that characterizes 

locality-oblivious GC and locality-aware GC 



Related Work on GC 

 Theoretical analysis on GC 

• Hu et al. (SYSTOR09), Bux et al (Performance10), Desnoyers 

(SYSTOR12): model greedy algorithm on GC  

• Li et al. (Sigmetrics13): model design tradeoff of GC between 

performance and endurance  

• Benny Van Houdt (Sigmetrics13, Performance13): model write 

amplification of various GC algorithms under uniform workload 

and hot/cold workload  

• Yang et al. (MSST14): analyzing the performance of various 

hotness-aware GC algorithms 

 Our work focuses on the impact of data locality on 

GC performance under general workload 
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How SSDs Work? 

Organized into blocks 

Each block has a fixed number (e.g., 64 or 128) 

of fixed-size (e.g., 4-8KB) pages 

Three basic operations: read, write, erase 

• Read, write: per-page basis 

• Erase: per-block basis 

Out-of-place write for updates: 

• Write to a clean page and mark it as valid 

• Mark original page as invalid 
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 Garbage collection (GC) reclaim clean pages 

• Choose a block to erase 

• Move valid pages to another clean block 

• Erase the block 

 

 

 

 Limitations: 

• Blocks can only be erased a finite number of times 

• SLC: 100K, MLC: 10K, 3 bits MLC (several K to several hundred) 

• GC introduces additional writes (cleaning cost) 

• Degrades both performance and endurance 
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Before GC After GC 

How SSDs Work? 
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Workload Model 

Clustering 

• Only a small proportion of pages are accessed 

• Let 𝑓𝑎 be proportion of logical pages that are active 

Skewness 

• Access frequency of each page varies significantly 

• 𝑛 access types 

• Two vectors: 𝒓 = 𝑟1, 𝑟2, … , 𝑟𝑛 , 𝒇 = (𝑓1, 𝑓2, … , 𝑓𝑛) 
• type-𝑖 pages account for a proportion 𝑓𝑖 of active pages and 

are uniformly accessed by a proportion 𝑟𝑖 of requests 

Both clustering and skewness are observed in 

real-world traces 
10 



GC Algorithms 

Greedy Random Algorithm (GRA) 

• Defined by a window size parameter 𝑑 

• Two steps to select a block for GC 

• First select 𝑑 blocks with the fewest valid pages (greedy) 

• Then uniformly select a block from the 𝑑 blocks (random) 

Special cases 

• 𝑑 = 1: GREEDY algorithm 

• 𝑑 = N: RANDOM algorithm 
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Locality-oblivious GC 

Write and GC process with single write frontier 

• One block is allocated as the write frontier at any time 

Writes are sequentially directed to write frontier 

• Internal writes: due to GC 

• External writes: due to workload 

Write frontier is sealed until all clean pages in 

the block are used up 

Another clean block is allocated as write frontier 

• GC is triggered to reclaim a block 
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State of Blocks 

 𝑘: total number of pages in a block 

 𝐶𝑖 𝑑 : average number of type-𝑖 valid pages in the block 

chosen for GC 

 𝐶 𝑎 𝑑 : Internal page writes (page writes due to GC) 

• Sum of 𝐶𝑖 𝑑   13 



State of Blocks 

 Approximation: 𝑑 candidate blocks are chosen from the 

𝑑 blocks sealed in the earliest time 

• Earlier sealed blocks have fewer valid pages on average 
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General Analysis Framework 

Average cleaning cost in each GC is 

 
 

• 𝑁𝑎 is number of active blocks and 𝐶 𝑎 𝑑  can be computed via 

 

•                                      where 

 

𝐶 (𝑑) is a function of 𝑑, 𝑓𝑎, 𝑟𝑖 and 𝑓𝑖 

• GC cleaning cost is affected by GC algorithms and 

workload locality (both clustering and skewness) 
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Case Studies 

GRA with window size 𝑑 = 𝑜(𝑁) 

• Includes the case of GREEDY (𝑑 =1) 

 

 

GRA with window size 𝑑 ≥ 𝑁𝑎 

• Includes the case of RANDOM (𝑑 = 𝑁) 

 

 

GRA with window size 𝑑 = 𝛼𝑁𝑎 
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Locality-aware GC 

Differentiating data reduces GC cleaning cost 

Consider locality-aware GC using data grouping 

• Differentiating different types of data pages 

• Storing them separately in separate regions 

 Issues to address: 

• How data grouping influences the GC performance 

• How much is the influence for workloads with different 

degrees of locality 
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System Architecture 

 The whole SSD is divided into 𝑛 + 1 regions 

 Each region is used to store one particular type of data 

 The 𝑛 + 1 regions can be viewed as 𝑛 + 1 independent 

sub-systems 

• Each of the first 𝑛 sub-systems is fed with a uniform workload 

• Previous analysis on locality-oblivious GC can be applied in 

each region 
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Model Validation 

 DiskSim + SSD extension developed by Microsoft 

 Workloads:  
• Skewed workload: 𝑓𝑎 = 0.1, 𝑛 = 2, 𝒓 =  0.8,0.2 ,  𝒇 =  (0.2,0.8) 

• Fine-grained workload: 𝑓𝑎 = 0.1, 𝒓 = 0.4,0.3,0.2,0.1 , 𝒇 = (0.2,0.2,0.3,0.3) 

 

19 Our model matches simulation results 
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Impact of Data Locality on 

Locality-oblivious GC 

 Cleaning cost increases as either the active region size 

or skewness increases 

 The increase is more pronounced for a smaller 𝑑 

• GREEDY algorithm shows the most increase 

• Data locality has no impact on RANDOM algorithm 20 

Impact of clustering Impact of skewness 



Trace-driven Evaluation 

 Locality-oblivious GC 

• GREEDY (RANDOM) gives the best (worst) performance 

• GREEDY has the most varying performance across workloads 

 Locality-aware GC 

• Cleaning cost can be significantly reduced with data grouping 

• The further reduction is marginal when data is classified into more types 

Locality-oblivious GC Locality-aware GC 



Summary 

 Propose a general analytical model to study the impact 

of data locality on GC performance 

• Analyze various locality-oblivious GC under different workloads 

• Analyze the impact of locality-awareness with data grouping 

• Conduct DiskSim simulation and trace-driven evaluations 

 Cleaning cost depends on clustering/skewness, and 

impact varies across algorithms 

 Data grouping efficiently reduces the cleaning cost 

• Different spare block allocations show significant differences 

 Future work 

• More validation beyond DiskSim simulations 

• GC implementation in SSD-aware file systems 
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Thank You! 

Contact: 

• Patrick P. C. Lee 

http://www.cse.cuhk.edu.hk/~pclee  
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http://www.cse.cuhk.edu.hk/~pclee


Backup 

 

24 



Analysis on locality-aware GC   

One design issue of locality-aware GC 

• How many spare blocks should be allocated to each 

region 

• Allocation 𝒃 = 𝑏1, 𝑏2, … , 𝑏𝑛 : proportion 𝑏𝑖 of spare 

blocks are allocated to region 𝑖 

Average cleaning cost of locality-aware GC with 

GREEDY algorithm in region 𝑖 is 

 

• Allocation of spare blocks affects the cleaning cost of 

locality-aware GC 
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Performance Gain with 

Locality Awareness 

 Data grouping effectively reduces GC cleaning cost 

 Spare block allocation has significant impact on the 

performance of locality-aware GC 

• The impact decreases as the clustering increases 

• The impact increases as the skewness increases 
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