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Storage Performance Analyzer           I 

  Two part framework 
i) Benchmark harness with included I/O benchmarks 
  ii) Tailored analysis library to analyze the results 

  Tailored and pre-packaged for performance evaluation 
storage systems in distributed and virtualized environments 
  Accepted in SPEC RG repository of  
peer-reviewed tools 
http://research.spec.org/tools/ 

The Storage Performance Analyzer (SPA) 

℠
Research
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Storage Performance Analyzer           II 

  Design aspects and Practical benefits 
  Synchronized execution on multiple targets 
  Automation of experiment runs with parameter variation 
  Persisting results and avoid piles of log files 
  Easy and powerful statistical evaluation 

 

The Storage Performance Analyzer (SPA) 
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  Benchmark harness   
  Coordinates the execution of 

attached benchmarks and 
monitors   

  Written in high-level 
programming language (Java) 
à Easy to debug 

The Storage Performance Analyzer (SPA) 

Architecture 

Analysis Library

Benchmark Harness

Benchmark
Controller

Benchmark
Driver

DataStore 
Interface

Persistence 
Component

Regression 
Modeling

Regression 
Optimization

Regression 
Techniques

Benchmarking
Component

Performance Modeling
Component

SQLite

Monitoring
Driver

R Libraries

Running on Target(s)

Optional

Benchmark
Benchmark

Monitor

Remote 
Execution

  Easy data persistence  
  Lightweight SQLite Database 

  Tailored analysis library   
  Processes and evaluates the 

collected data and 
measurements   

  Integrated into statistics tool R 
(http://www.r-project.org/)  
àFull control over the analysis 
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SPA in Action – Case Studies 

  Run the benchmark and analyze the results 

  I. System Analysis and Evaluation 
  II. Statistical Analysis and Statistical Modeling 
  III. System Analysis and Explicit Modeling 

The Storage Performance Analyzer (SPA) 
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Figure 2: Relation between the Regression Techniques

3.5 Cubist Forests
Cubist forests [26, 18] are an extension of M5 trees. Thus,
Cubist forests are rule-based model trees with linear models
in the leaves. Compared to M5, Cubist introduces two
extensions. First, it follows a boosting-like approach, i.e.,
it creates a set of trees instead of a single tree. To obtain
a single value, the tree predictions are aggregated using
their arithmetic mean. Second, it combines model-based
and instance-based learning (cf. [24]), i.e., it can adjust the
prediction of unseen points by the values of their nearest
training points.

Model Derivation. Initially, the maximum number of trees
in Cubist is defined to construct a forest. The first tree is
created using the M5 algorithm. The following trees are
created to correct the predictions of the training points by
the previous tree ft(�x). Each value of a training point yi is
modified by y�

i := 2 yi � ft(�x) to compensate for over- and
under-estimations. Then, the tree creation is repeated. In
contrast to, e.g., Random Forests [4] combining the prediction
trees with the mode operator, Cubist aggregates the values
predicted by each tree using arithmetic mean. Finally, the
prediction of unseen points can be adjusted by the values of
a possibly dynamically determined number of training points
(so-called instance-based correction), cf. [24]. The prediction
of a new point �x is adjusted by the weighted mean of the
nearest training points (so-called neighbors) with weight
wn := 1/(m(�x,�n) + 0.5) for every neighbor �n, where m(�x,�n)
is the Manhatten distance of �x and �n. M5 is a special case
of Cubist with one tree and no instance-based correction.

Parameters.

� nsplits: Maximum number of splits in the forward step.

� ntrees : Number of trees.

� ninstances : Size of instance-based correction.

3.6 Summary
Figure 2 shows an overview of the considered regression
techniques illustrating the relationships among them. As
described above, the MARS algorithm can be seen as an
extension of LRM by allowing piecewise linear models. How-
ever, MARS regulates the number of linear terms. While
MARS and CART seem relatively di�erent, the forward step
of MARS can be transformed into the one of CART by using
a tree-based structure with step functions, cf. [12]. M5 in
turn can be seen as a combination of LRM and CART. How-
ever, M5 di�ers from CART in the complexity criterion and
the pruning procedure. Finally, Cubist extends M5 by intro-
ducing a boosting like scheme creating several trees that are
aggregated by their mean. Furthermore, Cubist introduces
an instance-based correction to include the training data in
the prediction of unseen data.

IBM System z

IBM DS8700

CPU, RAM

Processors,
Memory

PR/SM (Hypervisor)

z/VM (Hypervisor)

z/Linuxz/OS

z/Linux

LPAR1 LPAR2

RAID Arrays SSD/
HDD

Storage Server
VC
NVC

Fibre
Channel

Switched
Fibre Channel

Figure 3: IBM System z and IBM DS8700

4. METHODOLOGY
In our approach, we apply statistical regression techniques
to create performance models based on systematic measure-
ments. In this section, we present our experimental environ-
ment and setup as well as our measurement methodology
and performance modeling approach.

4.1 System Under Study
A typical virtualized environment in a data center consists
of servers providing computational resources connected to
a set of storage systems. Such storage systems typically
di�er significantly from traditional hard disks and native
storage systems due to the complexity of modern storage
virtualization platforms.

In this paper, we consider a representative virtualized en-
vironment based on the IBM mainframe System z and the
storage system DS8700. They are state-of-the-art high-perfor-
mance virtualized systems with redundant or hot swappable
resources for high availability. The System z combined with
the DS8700 represent a typical virtualized environment that
can be used as a building block of cloud computing infrastruc-
tures. It supports on-demand elasticity of pooled resources
with a pay-per-use accounting system (cf. [22]). The Sys-
tem z provides processors and memory, whereas the DS8700
provides storage space. The structure of this environment is
illustrated in Figure 3.
The Processor Resource/System Manager (PR/SM) is a

hypervisor managing logical partitions (LPARs) of the ma-
chine and enabling CPU and storage virtualization. For
memory virtualization and administration purposes, IBM
introduces another hypervisor, z/VM. The System z supports
the classical mainframe operating system z/OS and special
Linux ports for System z commonly denoted as z/Linux.
The System z is connected to the DS8700 via fibre channel.
Storage requests are handled by a storage server having a
volatile cache (VC) and a non-volatile cache (NVC). The
storage server is connected via switched fibre channel with
SSD or HDD RAID arrays. As explained in [8], the storage
server applies several pre-fetching and destaging algorithms
for optimal performance. When possible, read-requests are
served from the volatile cache, otherwise they are served
from the RAID arrays and stored in the volatile cache for
future requests. Write-requests are written to the volatile as
well as the non-volatile cache, but they are destaged to the
RAID arrays asynchronously.
In such a virtualized storage environment, a wide vari-

ety of heterogeneous performance-influencing factors exists,
cf. [23]. In many cases, the factors have a significantly di�er-
ent e�ect compared to traditional native storage systems. As
Figure 1b illustrates, e.g., the standard Linux I/O scheduler
CFQ performs significantly worse than the NOOP scheduler
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Conclusion 

The Storage Performance Analyzer (SPA) 

•  Systematic analysis of I/O performance in virtualized environments 
•  Measuring, Monitoring, and Modeling of I/O Performance 
•  Peer-reviewed tool allowing analysis with high degree of automation

Storage Performance Analyzer (SPA) 

•  SPA Project Website  
http://storageperformanceanalyzer.github.io/SPA/ 
•  Sources and prepared drops for common platforms
•  Documentation and examples

•  SPEC RG Tool Repository  
http://research.spec.org/tools/
•  Peer-reviewed tools

Download 

℠
Research

http://www.descartes-research.net/tools/ 


